Мягкий пуск стартерного электродвигателя постоянного тока

Мягкий пуск стартерного электродвигателя постоянного тока

Плавный пуск коллекторного двигателя. Сначала ничего не вышло, но все закончилось хорошо

До этого я никогда не делал устройство плавного пуска.

Чисто теоретически, я представлял, как реализовать эту функцию на симисторе, правда такой вариант не без недостатков — потеря мощности и необходим теплоотвод.

Блуждая по пыльным китайским лабазам, в тщетных попытках в залежах контрафакта и неликвида отыскать что-нибудь стоящее, но не дорогое, наткнулся я на этот товар.

Бла-бла-бла

Покупка не была ради покупки, а осознанная необходимость. Задумал я написать обзор в стол поставить ручной фрезер. А он у меня без плавного пуска, стартует резко, саморазрушаясь и руша окружающее его.

Мягкий старт и плавный пуск разве не одно и тоже? Сомнения конечно были, хотя я с терморезисторами дел не имел, видел их только в блоках питания компьютеров, всегда думал, что они реагируют на «скачки и всплески», т. е. быстро, но «the voltage to rise slowly» и «after about five seconds» зародили червь сомнения.

Да еще и “or other high starting current machine applications.»
Поскольку отсутствие знаний делает нас расточительными и решительными, я заказал этот девайс и не на секунду об этом не пожалел.

Вот что пишет про него продавец: Мягкий старт блока питания для усилителя класса А, обещая: 4 кВт мощности и 40 А через контакты реле при напряжении AC от 150 В до 280 В. Размер 67 мм x 61 мм x 30 мм, продавец называет его ультра-маленьким – а-ха-ха.

Как бы мой фрезер по току в рамки попадает, даже если разделить китайские амперы на два, но в таком размере внутрь корпуса инструмента плата невпихуема. И, да, это конструктор.

Нужно паять!Товар пришел в таком виде, плюс еще для лучшей сохранности был завернут в обрывок газеты на китайском/корейском/японском языке, который пропал, опрос домочадцев и многочисленной челяди ясности не внес, кому и для каких надобностей этот клочек понадобился, поэтому фото газеты нет, сверху был еще пакетик без всякой пупырки. Паять легко — все нарисовано и подписано.

Плата – может кому пригодится

Спаял:

Обратная сторона

Набросал принципиальную схемуКак работает: при включении у R2 сопротивление большое, напряжение на нагрузке меньше чем 220 V, терморезистор нагревается, сопротивление его стремится к нулю, а напряжение на нагрузке к 220 V. Соответственно двигатель набирает обороты.

Заумь

Одновременно с этим выпрямленное и стабилизированное VD2 напряжение (24 V, хотя по первому попавшемуся даташиту должно быть 25, но вольт туда, вольт сюда…) запитывает схему включения реле. Через R1 заряжается конденсатор C3, емкость которого определяет время срабатывания реле.

Через 5 секунд открывается транзистор VT2, контакты реле шунтируют терморезистор R2 и двигатель работает на максимальной мощности.

Гладко было на бумаге… В реальности подключение данного устройства никакого плавного пуска двигателю не обеспечивает, терморезистор нагревается мгновенно, мотор сразу молотит почем зря, только реле издевательски щелкает через 5 секунд. Пробовал двигатель на 150 Вт — эффект тот же.

Бла-бпа-бла

Ругал на чем свет стоит китайского купца. Домашние животные, дошколята и приживалки, наблюдавшие за экспериментом, разбежались и попрятались по темным углам, теща на всякий случай достала из рукава пестик.

А вот не надо вводить в заблуждение доверчивых русских покупателей.

Допил одонки из бутылки, оставшейся с позапрошлой коронации, закусил холодной кулебякой, успокоился… Достал из помойного ведра плату, обобрал с нее подсолнечную шелуху.

«Если работа проваливается, то всякая попытка ее спасти ухудшит дело», — утверждает Эдвард Мерфи. «Слишком много людей ломаются, даже не подозревая о том, насколько близко к успеху они были в тот момент, когда упали духом,» — спорит с ним Томас Эдисон. Эти две цитаты никакого отношения к делу не имеют, приведены здесь, чтобы показать, что автор отчета не просто охотник за халявой и тупой потребитель китайских товаров, а человек начитанный, приятный собеседник и интеллектуал. Фигли. Но к делу. Завалялись у меня в чулане на антресолях в шляпной коробке пара микросхем К1182ПМ1Р.

Выжимка из даташита:

Непосредственное применение ИС — для плавного включения и выключения электрических ламп накаливания или регулировки их яркости свечения. Так же успешно ИС может применяться для регулировки скорости вращения электродвигателей мощностью до 150 Вт (например, вентиляторами) и для управления более мощными силовыми приборами (тиристорами).

На одной из них я и собрал устройство плавного пуска, которое не лишено недостатков, но работает, как надо.С1 задает время плавного включения, R1 величину напряжения на нагрузке. У меня максимальное напряжение при 120 ом получилось. При С1 100 мкФ время разгона около 2-х секунд.

Поменяв R1 на переменный можно регулировать обороты коллекторного двигателя, без обратной связи естественно (хотя так реализовано на подавляющем большинстве продаваемого электроинструмента). Симистор VS1 любой нашедшейся, подходящий по мощности. У меня завалялся BTA16 600B.

Обратная сторона

Все работает.Теперь осталось скрестить два устройства, которые взаимно дополняют друг друга, сводя на нет недостатки присущие каждому в отдельности.

Бла-бла-бла

В принципе задача несложная для живого, пытливого ума. Выпаял термистор, и выбросил его спрятал до лучших времен, на его место впаял два проводка идущие от катода и анода симистора второй платы. Уменьшил емкость С3 на первой плате до 22 мкФ, что бы реле замыкало катод и анод симистора не через 5 секунд, а примерно через две.

При температуре воздуха 30 град. С температура диодного моста 50 град., стабилитрона 65 град., реле 40 град. Все — переделка закончена.

Бла-бла-бла

Другой бы, менее уверенный в своих силах, обрадовался бы результату, закатил бы пир горой, устроил бы праздник с медведями и цыганами. Я же просто открыл бутылочку шампанского, заставил девок плясать хороводы во дворе и отменил субботнюю порку.

Осталось только оформить это все в корпус, уже было хотел, но что-то дома нет пластинки металлической, с помощью которой корпус будет крепиться к столу. Выглядеть будет все примерно так:Мои выводы неоднозначны, оценки предвзяты, рекомендации сомнительны.

Все устал, еще эти коты все время в кадр лезли – замучился гонять.

Источник: https://mysku.ru/blog/aliexpress/54717.html

Оптимальные схемы для плавного пуска электродвигателя, созданных своими руками

Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим.

Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту.

Ну а лифтом, наверняка, пользовался каждый.

Электродвигатели и нагрузки — проблема?

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата.

Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню.

Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей, что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов: систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов — это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание — стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени.

Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление.

Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота.

Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник».

Такой вариант старта позволяет добиться тока почти на треть ниже, чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин.

В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново.

То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

Читайте также:  Фильтрующая вытяжка для паяльных работ

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных.

Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей.

Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт.

Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме.

Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей.

Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов.

Его универсальность позволяет реализовать массу функций, таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя, после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации.

Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты.

Использование схем плавного пуска, способно значительно уменьшить их влияние.

Плавный пуск своими руками

Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов — хоть отбавляй.

Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель, который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

Источник: https://elektro.guru/elektrooborudovanie/elektrodvigatel/proizvodstvo-svoimi-rukami-plavnogo-puska-dlya-elektrodvigatelya.html

Пуск двигателя постоянного тока

Как и в случае с асинхронными двигателями, пуск двигателей постоянного тока осложнен возникающими при пуске большими значениями пусковых токов и моментов.

Но в отличие от асинхронных двигателей, в ДПТ пусковые токи превышают номинальные в 10-40 раз.

Такое громадное превышение может привести к выводу двигателя из строя, повреждению связанных с двигателем механизмов и большим просадкам напряжения в сети, что может сказаться на других потребителях. Поэтому пусковые токи стараются ограничить до значений (1,5…2) Iн.

Для маломощных двигателей (до 1 кВт) при условии отсутствия нагрузки на валу, можно применить прямой пуск, то есть непосредственно от сети. Это связано с тем что масса движущихся частей двигателя не велика, а сопротивление обмотки относительно большое. При прямом пуске таких двигателей пусковые токи не превышают значений (3…5) Iн, что для таких двигателей не критично.

Когда двигатель работает при постоянном напряжении и сопротивлении обмотки якоря, ток в якоре можно найти с помощью формулы

В этой формуле U – напряжение питающей сети, Епр – противоЭДС, ∑r – сопротивление обмоток якоря. ПротивоЭДС Епр возникает при вращении якоря в магнитном поле статора, при этом в двигателе, она направлена против якоря. Но когда якорь не движется, Епр не возникает, а значит, выражение для тока примет следующий вид

Это и есть выражение для определения пускового тока.

Глядя на формулу можно прийти к выводу, что снижения пускового тока возможно либо снижением напряжения, либо увеличением сопротивления якорной обмотки.

Пуск двигателя снижением напряжения применяется, если питание двигателя организовано от независимого источника энергии, который можно регулировать. На практике такой пуск используется для двигателей средней и большой мощности.

Мы рассмотрим более подробно способ пуска двигателя постоянного тока с помощью введения дополнительного сопротивления в цепь якоря. При этом пусковой ток будет равен

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Следует знать, что с дополнительным сопротивлением в обмотке якоря двигатель работает не на естественной, а на более мягкой искусственной характеристике, которая не подходит для нормальной работы двигателя.

Пуск двигателя осуществляется в несколько ступеней. После некоторого разгона двигателя, Епр ограничит ток, а следовательно пусковой момент, чтобы поддержать его на прежнем уровне, нужно уменьшить сопротивление, то есть переключить реостат или шунтировать резистор.

Допустим, что ступени у нас четыре, тогда механическая характеристика будет выглядеть следующим образом

На первой ступени, когда добавочное сопротивление максимально и равно R1+R2+R3 двигатель начинает свой разгон. После достижения определенной точки, которую получают с помощью расчетных данных, сопротивление R3 шунтируют.

При этом двигатель переходит на новую характеристику, и разгоняется на ней все до той же точки. Таким образом, двигатель выходит на естественную характеристику, не пострадав от действия больших пусковых токов и моментов.

1 1 1 1 1 1 1 1 1 1 0.00 (0 Голоса)

Источник: http://electroandi.ru/elektricheskie-mashiny/pusk-dvigatelya-postoyannogo-toka.html

Как происходит пуск двигателя постоянного тока

Пуск двигателя постоянного тока имеет ряд отличительных особенностей.

Объясняется это большим значением пускового тока, которое необходимо предварительно ограничить.

Если этого не сделать, то может повредиться внутренняя цепь обмотки якоря.

Существует несколько способов запуска: прямой, реостатный и метод плавного повышения питающего напряжения.

Что происходит при пуске двигателя

По мере нарастания токовой нагрузки на обмотке статора увеличивается крутящий момент электродвигателя, который через вал передается на его подвижную часть – ротор. Чем быстрее возрастает крутящий момент, тем сильнее разогревается обмотка статора.

Это явление может привести к:

  • выходу из строя изоляции;
  • возникновению вибраций;
  • деформации механических частей двигателя;
  • полному выходу из строя мотора.

Большой ток может вызвать бурное искрение под щетками, что приведет к выходу из строя коллектора.

Избежать поломки можно, понизив пусковой ток до номинальной частоты вращения сразу после старта электромотора. Добиться этого можно несколькими способами. Выбор оптимального варианта зависит от технических характеристик мотора и его назначения.

Прямой пуск

Данный метод основан на прямом подключении якорной обмотки к электрической сети при номинальном напряжении двигателя. Прямой пуск можно применять только в случае наличия стабильного питания мотора, жестко связанного с приводом.

Этот способ является одним из самых простых. Температура при прямом пуске повышается, по сравнению с прочими способами, незначительно.

Схема прямого пуска

Метод прямого пуска наиболее предпочтителен при отсутствии специальных ограничений на ток, поступающий от электросети.

Если электродвигатель работает в режиме частых запусков и отключений, его необходимо снабдить простейшим оборудованием. Его роль может выполнять расцепитель с ручным управлением. Напряжение в этом случае подается на клеммы электромотора.

Прямой пуск можно применять только на маломощных двигателях, поскольку пик нагрузки а крупных моделях может превышать номинальную нагрузку в 50 раз.

Реостатный пуск

Метод пригоден для запуска оборудования большой мощности. Процесс осуществляется следующим образом:

  1. Из провода, разделенного на секции и имеющего высокое удельное сопротивление, изготавливается реостат.
  2. Устанавливается ток возбуждения на уровне номинального значения.
  3. Во время запуска последовательно уменьшается сопротивление реостата, исключая таким образом скачки электрического тока.

Включение в схему реостата обеспечивает безопасность запуска двигателей самой высокой мощности.

Реостатный пуск

При реостатном пуске разгон двигателя происходит постепенно с постоянным ускорением. Количество ступеней реостата зависит от требований к плавности запуска мотора и разности

Imax – Imin.

Значения их сопротивлений определяется расчетом. В среднем пусковые реостаты имеют 2-7 ступеней.

Главная задача проектировщика – обеспечить одинаковое значение максимального и минимального тока на всех ступенях при их переключении в заданных временных интервалах.

Процесс переключения пускового реостата практически не поддается автоматизации. Если это необходимо (например, в автоматизированных установках), применяются пусковые сопротивления, поочередно шунтируемые контактами контакторов, работающих автоматически.

Как только двигатель войдет в рабочий режим, сопротивление реостата необходимо полностью вывести, поскольку рассчитывается оно только на кратковременную работу. Если ток будет проходить через реостат длительное время, он просто выйдет из строя.

Уменьшается сопротивление тоже ступенчато.

Пуск путем плавного повышения питающего напряжения

В обмотках двигателей насосов, конвейеров, воздуходувок в момент запуска возникают повышенные токи, превышающие их номинальное значение в 6 раз. Это явление отрицательно сказывается на составных частях мотора, снижая их долговечность. Поэтому в электрооборудовании мощностью свыше 1 кВт используют плавный пуск.

Смысл данного способа заключается в следующем: питающее напряжение повышается постепенно до тех пор, пока двигатель не выйдет на рабочий режим. Регулировка производится при помощи тиристоров или симисторов. Они располагаются «спина к спине» и устанавливаются на каждой из питающих линий переменного тока.

Устройство плавного пуска

Приводятся в действие тиристоры на начальном этапе, причем их включают последовательно с небольшой задержкой для каждого полупериода. Такая схема работы способствует эффективному наращиванию напряжения (среднего переменного) на электродвигателе вплоть до его выхода на номинальное напряжение электросети.

Как только мотор достигнет номинальной скорости вращения, его можно переключить напрямую по схеме байпас.

Управление большими двигателями осуществляется посредством установок плавного пуска или частотных преобразователей.

Но эти устройства с успехом заменяют:

  • выключателями;
  • разъединителями полного напряжения.

Последний подает полное напряжение на клеммы электродвигателя (принцип прямого пуска). Но такая схема возможна только на маломощных электроустановках.

Способ плавного пуска асинхронного двигателя с короткозамкнутым ротором

Существуют и другие мягкие пускатели, обеспечивающие плавную остановку двигателя.

Они необходимы в устройствах, которые при резком снижении скорости вращения могут привести к их поломке или нарушениям разного характера.

В качестве примера можно привести насос, быстрая остановка которого вызовет возникновение гидроудара в системе. Нежелательна резкая остановка конвейерных лент, в результате которой полотно может выйти из строя.

Плавный останов осуществляется по такому же принципу, что и плавный пуск — с использованием силовых полупроводников.

Особенности плавного пуска трехфазных двигателей

На электродвигателях данного типа применяется мягкий пуск «звезда-треугольник». Схема работает следующим образом:

  • изначально обмотки мотора соединены звездой;
  • при выходе двигателя на заданные параметры они переключаются в соединение треугольником.

Читайте также:  Радиолюбительский дозиметр

Система управления трёхфазным двигателем (инвертор)

В схему устройства входят:

  • контакторы на каждую фазу;
  • таймера, задающего интервал времени;
  • реле перегрузки.

Такой способ позволяет держать пусковой ток на уровне 30% от его значения при прямом пуске. Соответственно, и крутящий момент ниже – не более 25%.

Применять метод «звезда-треугольник» можно только при наличии нагрузки на двигателе в момент его пуска.

Но чрезмерно нагруженное электрооборудование разогнать до номинальной скорости не удастся из-за недостаточного крутящего момента.

Устройства плавного могут играть роль регулятора напряжения электродвигателя, если в схеме присутствует соответствующий контроллер. Его задача – отслеживать коэффициент мощности мотора. Зависит он от нагрузки: при ее небольшом значении контроллер понизит напряжение и ток электродвигателя.

Пуск при пониженном напряжении цепи якоря

Ограничить пусковой ток можно, задействовав управляемый выпрямитель или отдельный генератор постоянного тока.

Обмотка возбуждения питается от другого источника с полным напряжением, обеспечивающим полный пусковой ток.

Такой способ используется для запуска мощных двигателей с регулируемой скоростью вращения.

Реверсирование (изменение направления вращения) выполняется путем изменения направления тока в обмотке возбуждения или якоре.

Источник: https://proprovoda.ru/elektrooborudovanie/dvigateli/pusk-dvigatelya-postoyannogo-toka.html

Пуск двигателей постоянного тока

При пуске двигателя в ход необходимо: 1) обеспечить надлежащий пусковой момент и условия для достижения необходимой скорости вращения; 2) предотвратить возникновение чрезмерного пускового тока, опасного для двигателя.

Возможны три способа пуска двигателя в ход: 1) прямой пуск, когда цепь якоря подключается непосредственно к сети на ее полное напряжение; 2) пуск с помощью пускового реостата или пусковых сопротивлений, включаемых последовательно в цепь якоря; 3) пуск при пониженном напряжении цепи якоря.

Прямой пуск

При n = 0 также Eа = 0 и, согласно выражению (5), в статье “Общие сведения о двигателях постоянного тока”

В нормальных машинах Rа = 0,02 – 0,1, и поэтому при прямом пуске с U = Uн ток якоря недопустимо велик:

Iа = (5 – 10) Iн .

Вследствие этого прямой пуск применяется только для двигателей мощностью до нескольких сотен ватт, у которых Rа относительно велико и поэтому при пуске Iа ≤ (4 – 6) Iн, а процесс пуска длится не более 1 – 2 с.

Пуск с помощью пускового реостата или пусковых сопротивлений

Рисунок 1. Схема пуска двигателя параллельного возбуждения с помощью пускового реостата (а) и пусковых сопротивлений (б)

Для двигателей с параллельным возбуждением самым распространенным является пуск с помощью пускового реостата или пусковых сопротивлений (рисунок 1).
При этом вместо выражения (5), в статье “Общие сведения о двигателях постоянного тока” имеем

(2)

а в начальный момент пуска, при n = 0,

(3)

где Rп – сопротивление пускового реостата, или пусковое сопротивление. Значение Rп подбирается так, чтобы в начальный момент пуска было Iа = (1,4 – 1,7) Iн [в малых машинах до (2,0 – 2,5) Iн].

Рассмотрим подробнее пуск двигателя параллельного возбуждения с помощью реостата (рисунок 1, а).

Перед пуском (t < 0) подвижный контакт П пускового реостата стоит на холостом контакте 0 и цепь двигателя разомкнута. В начальный момент пуска (t = 0) подвижный контакт П с помощью рукоятки переводится на контакт 1, и через якорь пойдет ток Iа, определяемый равенством (3).

Цепь обмотки возбуждения ОВ подключается к неподвижной контактной дуге д, по которой скользит контакт П, чтобы во время пуска цепь возбуждения все время была под полным напряжением.

Это необходимо для того, чтобы iв и Фδ при пуске были максимальными и постоянными, так как при этом, согласно выражению (8), в статье “Общие сведения о двигателях постоянного тока”, при данных значениях Iа развивается наибольший момент М. С этой же целью регулировочный реостат возбуждения ставится при пуске в положение Rп.в = 0.

При положении контакта П пускового реостата на контакте 1 (t = 0) возникают токи Iа и iв, а так же момент М, и если М больше Мст, то двигатель придет во вращение и скорость n будет расти со значения n = 0 (рисунок 2).

При этом в якоре будет индуктироваться электродвижущая сила (э. д. с.) Eа ∼ n и, согласно выражениям (2) и (8), представленных в статье “Общие сведения о двигателях постоянного тока”, Iа и M, а также скорость нарастания n будут уменьшаться.

Изменение этих величин при Mст = const происходит по экспоненциальному закону.

Рисунок 2. Зависимость Iа, M и n от времени при пуске двигателя

Когда Iа достигнет значения Iа мин = (1,1 – 1,3) Iн, контакт П пускового реостата переведется на контакт 2.

Вследствие уменьшения Rп ток Iа ввиду малой индуктивности цепи якоря почти мгновенно возрастет, M также увеличится, n будет расти быстрее и в результате увеличения Eа значения Iа и M снова будут уменьшаться (рисунок 2).

Подобным же образом развивается процесс пуска при последовательном переключении реостата в положения 3, 4 и 5, после чего двигатель достигнет установившегося режима работы со значениями Iа и n, определяемыми условием M = Mст [смотрите равенства (8) и (9), в статье “Общие сведения о двигателях постоянного тока”].

При пуске на холостом ходу Mст = M0. Ток Iа = Iа0 в этом случае мал и составляет обычно 3 – 8 % от Iн.

Заштрихованные на рисунке 2 ординаты представляют собой, согласно выражению (2), представленного в статье “Общие сведения о двигателях постоянного тока”, значения избыточного, или динамического, момента

Mдин = M – Mст ,

под воздействием которого происходит увеличение n.

Число ступеней пускового реостата и значения их сопротивлений рассчитываются таким образом, чтобы при надлежащих интервалах времени переключение ступеней максимальные и минимальные значения Iа на всех ступенях получилось одинаковыми.

По условиям нагрева ступени реостата рассчитываются на кратковременную работу под током.

Остановка двигателя производится путем его отключения от сети с помощью рубильника или другого выключателя. Схема рисунка 1 составлена так, чтобы при отключении двигателя цепь обмотки возбуждения не размыкалась, а оставалась замкнутой через якорь.

При этом ток в обмотке возбуждения после отключения двигателя уменьшается до нуля не мгновенно, а с достаточно большой постоянной времени. Благодаря этому предотвращается индуктирование в обмотке возбуждения большой э. д. с.

самоиндукции, которая может повредить изоляцию этой обмотки.

Применяются также несколько видоизмененные по сравнению с рисунком 1, а схемы пусковых реостатов, без контактной дуги д.

Конец цепи возбуждения при этом можно присоединить, например, к контакту 2, и при работе двигателя последовательно с обмоткой возбуждения будут включены последние ступени реостата.

Поскольку их сопротивление по сравнению с Rв = rв + Rр.в мало, то это не оказывает большого влияния на работу двигателя.

Автоматизировать переключение пускового реостата неудобно.

Поэтому в автоматизированных установках вместо пускового реостата используют пусковые сопротивления (рисунок 1, б), которые поочередно шунтируются контактами К1, К2, К3 автоматически работающих контакторов.

Для упрощения схемы и уменьшения количества аппаратов число ступеней принимается минимальным (у двигателей малой мощности обычно 1 – 2 ступени).

Ни в коем случае нельзя допускать разрыва цепи параллельного возбуждения.

В этом случае поток возбуждения исчезает ни сразу, а поддерживается индуктируемыми в ярме вихревыми токами.

Однако этот поток будет быстро уменьшаться и скорость n, согласно выражению (7), представленного в статье “Общие сведения о двигателях постоянного тока”, будет сильно увеличиваться (“разнос” двигателя).

При этом [смотрите равенство 8, в статье “Общие сведения о двигателях постоянного тока”] ток якоря значительно возрастет и возникнет круговой огонь, вследствие чего возможно повреждение машины, и поэтому, в частности, в цепях возбуждения не ставят предохранителей и выключателей.

Пуск при пониженном напряжении цепи якоря

Ограничение пускового тока достигается также в случае питания цепи якоря при пуске от отдельного источника тока с регулируемым напряжением (отдельный генератор постоянного тока, управляемый выпрямитель).

Обмотку возбуждения при этом необходимо питать от другого источника, с полным напряжением, чтобы иметь при пуске полный ток iв.

Этот способ пуска применяют чаще всего для мощных двигателей, притом в сочетании с регулированием скорости вращения.

Пуск двигателей последовательного и смешанного возбуждения производится аналогичным образом. Схема пуска двигателя смешанного возбуждения ничем не отличается от схемы пуска двигателя параллельного возбуждения (рисунок 1), а схема пуска двигателя последовательного возбуждения упрощается за счет исключения параллельной цепи возбуждения.

Для изменения направления вращения (реверсирования) двигателя необходимо изменить направление тока в якоре (вместе с добавочными полюсами и компенсационной обмоткой) или в обмотке (обмотках) возбуждения.

Источник: Вольдек А. И., “Электрические машины. Учебник для технических учебных заведений” – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

Источник: https://www.electromechanics.ru/direct-current/463-start-up-of-engines-of-a-direct-current.html

Копилка знаний – онлайн справочник прогресса в мире

Обзоры новых технологий, изучение инноваций строительства, разбор сантехнических идей, анализ схем электрики и понимание электроники.

Как делают стекловолокно и для чего нужен сшитый полиэтилен? Что такое реактивный ранец и как выбрать гребной винт лодочного мотора?

Современные технологии подстёгивают гражданский интерес. Новинки заставляют искать справочник, помогающий освоить неизбежный прогресс.

Справочник прогресса мира

Что такое спиннер и как выбрать насос для дома для дачи? Какими технологиями производят углеродное волокно и как собирают схему контроллера заряда аккумулятора?

Насколько сложны для обывателя электроника и подключение напряжения самостоятельно. Чем отличается сантехника стальная от пластика и какое строительство считается экономным?

Безграничный объём тайн механики, электрики, электроники, строительства, сантехники и даже туризма. Где найти разгадку?

Справочник технологий, новинок, прогресса в мире — лучший инструмент. На страницах справочника легко узнать как центровать валы агрегатов,  как сделать своими руками из дерева уникальный интерьер?

Каким способом получить карбон или уложить виниловый сайдинг и ламинат? Что нужно для применения программатора? Как освоить кулинарный туризм и узнать, что такое энтропия и коалесценция?

Интернет-копилка знаний

Новая механика, современная электроника, бытовое строительство, понятная электрика, европейская сантехника. Добавить прочий опыт — вот и доступ к знаниям!

Отныне каждому входящему на сайт ZETSILA.RU открыты технологии мира, а также:

  1. Опыт бывалых
  2. Советы спецов
  3. Инструкции производителей
  4. Анализы, исследования, обзоры
  5. Идеи и практические воплощения

База знаний традиционно держится на опорах, испытанных жизнью. Крепкие опоры помогают преодолеть любые преграды.

Как построить опорный механизм на фоне стремительных технологий и прогресса? Легче, чем может показаться на первый взгляд. Требуется немного — актуальная понятная информация.

Двигатель информации

Есть масса источников информации, дающих знания, но далеко не каждый справочник раскрывает тему максимально развёрнуто.

Копилка знаний по образу и подобию справочника — ZETSILA.RU, тоже не претендует на статус Википедии.

Здесь попросту стремятся увидеть детали широко раскрытыми глазами, информативно разъяснить и разложить темы на полочки.

Источник: http://zetsila.ru/%D0%BF%D1%83%D1%81%D0%BA%D0%BE%D0%B2%D1%8B%D0%B5-%D1%80%D0%B5%D0%B6%D0%B8%D0%BC%D1%8B-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8F/

Пуск электродвигателя постоянного тока | Полезные статьи – Кабель.РФ

При подаче напряжения на электродвигатель происходит скачок напряжения, который называется пусковым током. Пусковой ток часто выше номинального от 5 до 10 раз, но отличается своей кратковременностью.

Процессы, протекающие при пуске двигателя

Когда на обмотке статора увеличивается токовая нагрузка, одновременно с этим увеличивается крутящий момент двигателя, передающийся на вал ротора. Резкое увеличение крутящего момента может вызвать резкое повышение температуры обмотки статора и привести к неисправностям в изоляции, что может стать причиной вибраций, механических деформаций и выхода двигателя из строя.

Читайте также:  Компания ti представила rs-485 приемопередатчик с быстрой автоматической коррекцией полярности

Чтобы избежать поломки электродвигателя, сразу после начала его работы пусковой ток понижается до номинальных частот вращения. Для снижения пускового тока применяют несколько способов, которые также позволяют стабилизировать напряжение электропитания. Существует несколько способов запуска двигателей постоянного тока.

Прямой пуск электродвигателя постоянного тока

При прямом пуске подключение обмотки якоря происходит непосредственно к электрической сети. Это означает, что двигатель подключается к источнику электропитания при своем номинальном напряжении. Прямой пуск электродвигателя используется, когда есть стабильное питание двигателя, который жестко связан с приводом. Это один из самых простых методов пуска.

Преимуществом прямого пуска является то, что при таком запуске температура повышается не столь значительно, если сравнивать с другими методиками.

Если отсутствуют специальные ограничения на поступающий от электросети ток, то такой способ считается наиболее предпочтительным.

Те электродвигатели, что предназначаются для частых пусков и отключений, оборудуются специальной системой управления, с контактором и термореле, которые защищают прибор от поломки.

Если электродвигатели имеют малую мощность и работают без частых остановок и пусков, то для его включения требуется самое примитивное оборудование. Обычно им является вручную работающий расцепитель.

При такой схеме непосредственно на сами клеммы двигателя и подается напряжение. Для электродвигателей небольших размеров пусковой момент составляет 150–300 % от номинального, а сам пусковой ток — 300–800%.

Прямой пуск имеет то ограничение, что пик нагрузки некоторых крупных двигателей может быть в 15, а иногда и в 50 раз больше номинального. Такие нагрузки совершенно недопустимы, поэтому такой способ пуска применяется лишь на двигателях малой мощности.

Реостатный пуск электродвигателя постоянного тока

Реостатный пуск, в отличие от прямого, не имеет ограничений на мощность двигателя, поэтому его часто применяют на приборах большой мощности. Реостат для пуска изготавливается из провода, который имеет высокое удельное сопротивление и разделен на секции.

Ток возбуждения, который возникает при включении двигателя, устанавливается таким образом, чтобы соответствовать номинальным значениям.

Это необходимо для того, чтобы при пуске развивался максимально большой допустимый момент, что необходимо для быстрого разгона двигателя.

Реостатный пуск осуществляется вместе с последовательным уменьшением сопротивления реостата, что позволяет не допускать скачков электрического тока и гарантирует безопасность при включении даже самых мощных электродвигателей.

Пуск электродвигателя путем изменения питающего напряжения

Пуск путем изменения питающего напряжения является еще одним способом начать работу электродвигателя. При использовании реостатного пуска могут возникнуть большие потери энергии непосредственно в самом пусковом реостате.

Для того чтобы избежать этих потерь и повысить экономичность и энергоэффективность, двигатель запускается с помощью очень плавного постепенного повышения напряжения, которое подается на обмотку якоря. Для такого способа требуется отдельный источник постоянного тока, с помощью которого можно регулировать напряжение.

Для этого используют генераторы и управляемые выпрямители. Пуск путем изменения питающего напряжения двигателя является обычной практикой на тепловозах.

Источник: https://cable.ru/articles/id-1081.php

Пуск асинхронного двигателя

ПРЯМОЙ – ПЛАВНЫЙ – ЗВЕЗДА-ТРЕУГОЛЬНИК – ЧЕРЕЗ ПРЕОБРАЗОВАТЕЛЬ

Асинхронные электрические двигатели с короткозамкнутым ротором благодаря своей крайней простоте получили широкое распространение, особенно в трехфазных сетях, где им не требуются дополнительные пусковые или смещенные по фазе обмотки. При правильной эксплуатации асинхронный электродвигатель становится практически вечным – единственное, что в нем может потребовать замены, это подшипники ротора.

Однако ряд особенностей асинхронных двигателей определяет специфику их пускового режима: отсутствие обмотки якоря означает отсутствие противоЭДС индукции в момент включения обмоток статора, а следовательно – высокий пусковой ток.

Если для маломощных электрических двигателей это не критично, то в промышленных электродвигателях пусковые токи могут достигать очень высоких значений, что приводит к просадкам напряжения в сети, перегрузкам подстанций и электропроводки.

Прямой пуск асинхронного электродвигателя

Как уже было сказано выше, прямое включение обмотки асинхронного двигателя может применяться только при низкой мощности. В этом случае пусковой ток превышает номинальный в 5-7 раз, что не является проблемой для коммутационного оборудования и электропроводки.

Основной проблемой прямого пуска становится подключение нескольких электродвигателей к маломощной подстанции или генератору: включение в сеть нового электродвигателя может вызвать настолько сильную просадку напряжения, что уже работающие двигатели остановятся, а новому мотору не хватит пускового момента, чтобы стронуться с места.

Пусковой ток асинхронного двигателя достигает максимального значения в момент включения и плавно снижается до номинального по мере раскрутки ротора. Следовательно, для уменьшения времени перегрузки сети асинхронный двигатель должен включаться с минимальной нагрузкой, если это возможно.

Мощные токарные станки, гильотины для рубки металла не имеют фрикционных муфт, и все их вращающиеся механизмы раскручиваются в момент включения электродвигателя. В этом случае длительные просадки напряжения приходится прямо закладывать в проектируемое для них электроснабжение.

В начало

Плавный пуск асинхронного электродвигателя

Логичным способом снижения пускового тока стало снижение напряжения, подаваемого на статор в момент запуска, с его постепенным увеличением при разгоне двигателя.

Простейший и наиболее старый способ плавного пуска – реостатный пуск электродвигателя: в цепь статора последовательно включается несколько мощных резисторов, последовательно закорачиваемых контакторами.

Также могут использоваться и дроссели высокой индуктивности (реакторы), а также автотрансформаторы.

Подобный способ плавного пуска имеет очевидные недостатки:

Проблематичность автоматизации.

Работа контакторов не привязывается к реальному значению тока, они либо переключаются вручную, либо перебираются с помощью реле времени автоматически.

Усложнение пуска под нагрузкой.

Так как крутящий момент асинхронного двигателя пропорционален квадрату напряжения питания, снижение напряжения в момент пуска в 2 раза приведет к снижению крутящего момента в 4 раза. Применение плавного пуска с электродвигателями, напрямую подключенными к нагрузке, значительно увеличивает время выхода на рабочие обороты.

Совершенствование силовой электроники позволило создать компактные автоматические устройства плавного пуска (также называемые софтстартерами от английского soft start – «мягкий пуск») для асинхронных электродвигателей, устанавливаемые на стандартную монтажную рейку электрощитов. Они обеспечивают не только плавный разгон, но и торможение двигателя, позволяя регулировать параметры токов пуска и остановки в различных режимах:

Постоянное токоограничение.В момент запуска ток ограничивается на заданном превышении номинального и удерживается на этой величине все время разгона двигателя. Обычно используется ограничение на уровне 200-300% номинального тока. Перегрузка становится малозначительной, хотя ее длительность возрастает.Формирование тока.

В данном случае токовая кривая в момент включения двигателя имеет больший наклон, после чего софтстартер переходит в режим токоограничения.

Такой метод плавного пуска применяется при подключении к маломощным подстанциям или генераторам для снижения стартовой нагрузки, однако пусковой момент электродвигателя в данном случае минимален.

Для устройств, лишенных холостого хода электродвигателя, использовать формирование тока с пологой стартовой кривой невозможно.

Ускоренный пуск (кик-старт).Применяется с двигателями, напрямую приводящими нагрузку, так как иначе их пусковой крутящий момент может оказаться недостаточным для страгивания ротора.

В этом случае устройство плавного пуска допускает кратковременное превышение пускового тока в несколько раз (фактически осуществляется прямая коммутация), по истечении заданного времени ток снижается до двух-трехкратного превышения номинала.

Останов на выбеге.При отключении двигателя напряжение с него снимается полностью, вращение якоря продолжается по инерции. Наиболее простой способ коммутации, применимый при небольших мощностях и малой инерции привода.

Однако в момент разрыва цепи происходит сильный индуктивный выброс, приводящий к сильному искрению в контакторах. На мощных электродвигателях, а также при высоких рабочих напряжениях данный способ отключения неприемлем.

Линейное снижение напряжения.Применяется для более плавной остановки двигателя.

Нужно помнить, что крутящий момент двигателя при этом снижается нелинейно из-за квадратичной зависимости момента от напряжения, то есть снижение момента происходит наиболее резко в начале кривой.

Отключение питания происходит при минимальном токе в обмотке, соответственно коммутирующие выключатели практически не изнашиваются образованием искры между контактами.

Для снижения нагрузок при остановке применяется управляемое снижение напряжения:

  • вначале ток снижается минимально;
  • затем кривая начинает снижаться круче.

Снижение крутящего момента электродвигателя при этом близко к линейному. Этот способ управления остановом электродвигателя применяется в устройствах с высокой инерционностью привода.

При использовании такого рода устройств плавного пуска пусконаладочные работы заключаются в настройке нужного типа кривой пускового тока и, в случае использования режимов формирования тока или ускоренного старта, настройке длительности временного интервала начального участка кривой.

Применение устройств плавного пуска позволяет автоматизировать пусковой режим, но его главный минус остается – либо приходится закладывать в устройство возможность холостого хода электродвигателя, либо допускать кратковременные перегрузки сети, раскручивая мотор и нагрузку с кик-стартом.

В начало

Пуск по схеме звезда-треугольник

Другим способом запуска, использующимся на трехфазных двигателях, является перекоммутация обмоток: в момент пуска обмотки соединяются звездой, по мере разгона ротора обмотки переводятся в нормальное включение треугольником.

Такой метод пуска фактически является частным случаем способа пуска асинхронного электродвигателя на пониженном напряжении, так как напряжение на обмотках при этом снижаетсяпримерно в 1,73 раза.

Подобный способ пуска может быть легко реализован с помощью набора контакторов с ручным управлением или с приводом от реле времени, поэтому достаточно дешев и распространен.

Основные недостатки этого способа:

  1. При отказе одного из контакторов произойдет нарушение коммутации, в результате чего либо станет невозможным пуск, либо значительно снизится мощность двигателя.
  2. Снижение напряжения и тока является фиксированным.

  3. Крутящий момент двигателя при включении обмоток звездой уменьшается, поэтому запуск желательно также производить без нагрузки.

В начало

Пуск электродвигателя через частотный преобразователь

Наиболее гибкий способ управления не только режимом пуска, но и рабочими характеристиками асинхронного электродвигателя – это применение частотного преобразователя.

По своей сути частотный преобразователь представляет собой узкоспециализированный инвертор:

  • входное напряжение в нем выпрямляется;
  • затем заново преобразуется в переменное, но уже с заданной частотой и амплитудой.

Это происходит благодаря работе генератора широтно-импульсной модуляции (ШИМ), который создает серию прямоугольных импульсов заданной частоты и скважности (отношения длительности импульса к его периоду). Генерируемые импульсы управляют силовыми ключами, коммутирующими выпрямленное напряжение питания на обмотки выходного трансформатора.

Как осуществляется плавный пуск через частотный преобразователь?

В данном случае становится возможным плавное изменение не только напряжения, но и частоты питающего электродвигатель напряжения.

Благодаря тому, что ШИМ-генератор частотного преобразователя легко может управляться с обратной связью по потребляемому току, становится возможным пусковой режим, в котором ток не превышает номинальный – таким образом перегрузка питающей сети фактически отсутствует.

Однако такой пусковой режим требует значительного усложнения частотного преобразователя, поэтому для управления асинхронными электродвигателями обычно используется комбинация с отдельным устройством плавного пуска (УПП).

В начало

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/jelektrodvigateli_pusk.html

Источник

Спасибо за чтение статей на сайте

Индикатор уровня тормозной жидкости

Индикатор уровня тормозной жидкости

индикатор уровня тормозной жидкости – это… Что такое индикатор уровня тормозной жидкости?

  • Tata Xenon XT — Технические характеристики Пикапа Ксенон (Xenon) Двигатель: Модель ТАТА 2.2 Л ДИКОР ЕВРО IV Тип система подачи топлива прямым впрыском, двигатель с турбонагнетателем и с промежуточным охлаждением наддувочного воздуха Количество цилиндров 4 в ряд… …   Википедия
  • Характеристики — К.4. Характеристики Применяют следующие дополнительные характеристики: К.4.3.1.2. Номинальное напряжение изоляции Минимальное значение номинального напряжения изоляции должно быть 250 В. К.4.3.2.1. Условный тепловой ток на открытом воздухе… …   Словарь-справочник терминов нормативно-технической документации
  • ГОСТ Р 41.13-H-99: Единообразные предписания, касающиеся официального утверждения легковых автомобилей в отношении торможения — Терминология ГОСТ Р 41.13 H 99: Единообразные предписания, касающиеся официального утверждения легковых автомобилей в отношении торможения: 2.1 антиблокировочная система: Элемент системы рабочего тормоза, который во время торможения автоматически …   Словарь-справочник терминов нормативно-технической документации
  • Характеристики тормозных устройств — 5.2. Характеристики тормозных устройств 5.2.1. Все тормозные системы, которыми оборудовано транспортное средство, должны отвечать требованиям, предъявляемым к системам рабочего, аварийного и стояночного торможения. 5.2.2. Системы, обеспечивающие… …   Словарь-справочник терминов нормативно-технической документации
  • ГОСТ Р 41.13-99: Единообразные предписания, касающиеся официального утверждения транспортных средств категорий M, N и O в отношении торможения — Терминология ГОСТ Р 41.13 99: Единообразные предписания, касающиеся официального утверждения транспортных средств категорий M, N и O в отношении торможения оригинал документа: 2.11 автоматическое торможение: Торможение одного из нескольких… …   Словарь-справочник терминов нормативно-технической документации
  • время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник …   Словарь-справочник терминов нормативно-технической документации
  • ЖЕЛУДОК — ЖЕЛУДОК. (gaster, ventriculus), расширенный отдел кишечника, имеющий благодаря наличию специальных желез значение особо важного пищеварительного органа. Ясно диференцированные «желудки» многих беспозвоночных, особенно членистоногих и… …   Большая медицинская энциклопедия
  • Приборная панель — Для термина «Консоль» см. другие значения. Для термина «Панель» см. другие значения. Приборная панель (консоль)  название группы приборов, совмещённых в одной конструкции. Содержание 1 Автомобильная приборная панель …   Википедия
  • Ту-22М — Не следует путать с Ту 22. Ту 22М …   Википедия

Источник: https://universal_ru_en.academic.ru/1190905/%D0%B8%D0%BD%D0%B4%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80_%D1%83%D1%80%D0%BE%D0%B2%D0%BD%D1%8F_%D1%82%D0%BE%D1%80%D0%BC%D0%BE%D0%B7%D0%BD%D0%BE%D0%B9_%D0%B6%D0%B8%D0%B4%D0%BA%D0%BE%D1%81%D1%82%D0%B8

Следим за состоянием тормозов. Контроль уровня тормозной жидкости

На легковых автомобилях в тормозной системе применяется привод гидравлического типа. Тормозная жидкость не меняет свой объем при внешнем воздействии, а в таком приводе выступает в качестве рабочего вещества, передающего усилие тормозной педали на рабочие цилиндры тормозов

Если тормоза не работают. Далеко не самый худший вариант

От  количества тормозной жидкости и качества напрямую зависит работоспособность тормозов. Поэтому требуется постоянная проверка количества в системе привода и периодическая замена.

Жидкостью заполнены магистрали, идущие от главного тормозного цилиндра к рабочим. При нажатии на педаль, за счет возникающего давления жидкость перекачивается от главного цилиндра к рабочим. Чтобы в  магистрали не попал воздух, перекачанное количество жидкости необходимо компенсировать, поэтому в бачке тормозной системы, соединенным с главным цилиндром находится запас рабочего вещества.

Контроль за уровнем

Индикатор о низком уровне тормозной жидкости

Для удобства проверки за количеством тормозной жидкости в бачок установлен поплавковый датчик, который соединен с сигнальной лампой, расположенной на приборной панели. Но этот датчик срабатывает только в случае критического падения жидкости в бачке. Такие повреждения возникают, к примеру, при повреждении магистрали, что приводит к вытеканию рабочего вещества из системы.

Но бывают ситуации, когда уровня жидкости для нормального функционирования привода уже недостаточно, но его хватает на то, чтобы сигнальная лампа не загоралась. Поэтому полагаться только на датчик уровня не стоит, лучше перед поездкой визуально проверить и удостовериться в нормальном количестве жидкости в бачке, тем более, что процедура эта не занимает много времени.

Место под капотом автомобиля, где может находится бачок с тормозной жидкостью

Резервуар тормозной жидкости расположен в подкапотном пространстве. Зачастую он установлен на главный цилиндр, поэтому искать нужно с правой стороны за двигателем (стоя перед авто). В некоторых машинах бачок прикрыт защитными накладками.

Встречаются автомобили у которых резервуар – выносной и установлен отдельно от главного цилиндра, хоть и соединен с ним трубопроводами.

Но и в этом случае емкость помещают недалеко от цилиндра, поэтому искать нужно за двигателем или же справа на подкрылке.

Тормозные бачки изготавливаются ил белого или прозрачного пластика, поэтому уровень тормозной жидкости хорошо просматривается через стенки резервуара и откручивать крышку не нужно, да и не желательно.

Для проверки и контроля за уровнем, на стенках тормозного бачка нанесены метки «мин» и «макс». Но какое количество жидкости считается для того или иного авто нормальным, следует уточнять в технической документации к машине.

В одних моделях уровень должен быть чуть выше отметки «макс», у других –  между метками, но ближе к максимальному значению.

Доливка

Если уровень в резервуаре ниже требуемого и расположен возле отметки «мин», то осуществляется доливка. При этом важно использовать жидкость только ту, что залита в систему.

И хоть автолюбители утверждают, что вещества разных марок между собой совместимы, лучше не экспериментировать. Производители тормозных жидкостей используют в составе определенные добавки.

При смешивании может произойти конфликт добавок, что приведет к потере эксплуатационных качеств жидкости, а это повлияет на работоспособность тормозной системы.

Если же неизвестно, какая жидкость залита, то залейте какая есть, но в этом случае затягивать с заменой не стоит.
Осуществлять доливку тоже следует правильно, при этом на процедуру влияют конструктивные особенности резервуара. На одних моделях поплавковый датчик уровня установлен в тело бачка, у других же он вмонтирован в крышку бачка.

В первом варианте перед доливкой узнайте до какого уровня нужно доливать. А далее откручиваем крышку и доводим количество до необходимого. Заливать следует аккуратно, лучше воспользоваться воронкой. Важно не пролить вещество, чтобы оно не попало на проводку, поскольку это может вызвать окисление контактов.

Читайте также:  Мощный led-диммер

А вот в случае с датчиком, установленным в крышке, важно учитывать, что при закрытии бачка часть жидкости будет вытеснена поплавком, поэтому нельзя допускать заливку вещества выше указанной в тех. документации отметки.

Поскольку датчик расположен в крышке, то для того, чтобы ее открутить, предварительно нужно отсоединить провода. После выкручиваем крышку, доливаем, завинчиваем крышку обратно и подключаем провода.

Если случайно перелили жидкость, то излишки откачайте шприцем.

Ещё кое-что полезное для Вас:

Причины срабатывания датчика

Датчик уровня сигнализирует, что в бачке низкий уровень тормозной жидкости, а это происходит при утечках из магистралей. Поэтому при загорании сигнальной лампы сначала проверьте уровень в бачке, а затем осмотрите трубопроводы, идущие на рабочие цилиндры.

Но датчик может сработать и  по другой причине – сильном износе колодок. Чтобы компенсировать стирание колодок, поршни рабочих цилиндров по мере износа колодок выдвигаются из цилиндров. Из-за этого пространство внутри цилиндра под поршнем увеличивается и заполняется жидкостью.

Недостаток ее в приводе компенсируется из бачка, из-за чего уровень снижается до минимальной отметки. При этом датчик может и не загораться, но сигнал будет срабатывать во время торможения. При нажатии на педаль, жидкость из бачка будет подаваться в главный цилиндр, поэтому уровень ее в резервуаре снизиться ниже критической отметки.

При отпускании же педали, часть жидкости снова перетечет в резервуар, и датчик перестанет сигнализировать.

Чтобы устранить срабатывание датчика пополните количество жидкости. Но стоит понимать, что колодки изношены и их нужно заменить.

Помимо количества важно еще и качество жидкости. Она гигроскопична и накапливает в себе влагу. Содержание воды снижает температуру кипения, поэтому при интенсивном торможении высока вероятность отказа привода из-за закипания вещества.

Проверка качества

Качество тормозной жидкости проверяется специальным тестером. Но стоит отметить, что особой пользы от этого прибора нет.

Дело в том, что он определяет наличие влаги по сопротивлению (чем больше воды, тем ниже сопротивление). Но жидкости разных производителей даже в «чистом» состоянии имеют разное сопротивление.

Из-за этого результаты проверки будут недостоверными. Усугубляет ситуацию отсутствие возможности калибровки прибора.

К примеру, один и тот же тестер при проверке разных, но «чистых» жидкостей может показать, что какая-то из них имеет примеси воды, хотя это не так.

Этим пользуются не совсем честные СТО, которые с помощью такой проверки тестером навязывают автовладельцу услугу замены тормозной жидкости.
Поэтому особо проверке качества жидкости тестером доверять не стоит.

Лучше руководствоваться регламентом технического обслуживания авто, в котором  указывается периодичность замены и следовать рекомендациям.

Видео: Проверка уровня и влажности тормозной жидкости Daewoo Matiz 0.8L-1.0L МКПП и АКПП

Источник: http://AvtoMotoProf.ru/obsluzhivanie-i-uhod-za-avtomobilem/sledim-za-sostoyaniem-tormozov-kontrol-urovnya-tormoznoy-zhidkosti/

Что делать если горит индикатор тормозной жидкости на LADA

 20 апрель 2017  LadaOnline    7 423     

Индикатор аварийного состояния тормозной системы должен загораться красным цветом при включении зажигания и гаснуть через 2 секунды после запуска двигателя.

Длительное горение лампы при работающем двигателе свидетельствуют о включенном стояночном тормозе (ручнике) или падении уровня тормозной жидкости ниже метки «MIN».

Эксплуатировать автомобиль с горящим индикатором запрещено!

Датчик уровня тормозной жидкости находится в бачке главного тормозного цилиндра. При падении уровня жидкости ниже отметки «MIN», по сигналу датчика загорается контрольная лампа на панели приборов. Рекомендуется проверять датчик уровня тормозной жидкости при каждом плановом техническом осмотре.

Проверка датчика уровня тормозной жидкости

Выключите стояночный тормоз и проверьте уровень тормозной жидкости в бачке.

Если уровень жидкости в бачке ниже метки «MIN», а соответствующий значок в комбинации приборов не загорелась, нажимаем на фиксатор и отсоединяем колодку с проводами от датчика. Замыкаем контакты колодки жгута проводов куском провода.

  • Если лампа не загорается, значит в проводке автомобиля есть обрыв.
  • Если лампа загорелась, значит неисправен датчик.

Если уровень жидкости в норме (между «MIN» и «MAX»), а контрольная лампа после запуска двигателя продолжает гореть, нажимаем на фиксатор и отсоединяем колодку с проводами от датчика.

  • Если лампа погасла, то неисправен датчик.
  • Если лампа продолжает гореть, то в проводке автомобиля есть короткое замыкание или неисправна приборная панель.

Замена датчика производится вместе с бачком главного тормозного цилиндра. О неисправности тормозной системы также свидетельствуют горящие лампы ABS и ESC.

Ключевые слова: тормозные колодки лада гранта | тормозные колодки лада калина | тормозные колодки лада калина 2 | тормозные колодки лада приора | тормозные колодки лада ларгус | тормозные колодки нива | тормозные колодки лада веста | тормозные колодки lada xray | датчики lada xray | датчики лада веста | датчики лада ларгус | датчики лада гранта | датчики лада калина | датчики лада калина 2 | датчики лада приора | датчики нива | безопасность lada xray | безопасность лада веста | безопасность лада ларгус | безопасность лада гранта | безопасность лада калина | безопасность лада калина 2 | безопасность лада приора | безопасность нива | панель приборов lada xray | панель приборов лада веста | панель приборов лада ларгус | панель приборов лада гранта | панель приборов лада калина 2 | панель приборов лада калина | панель приборов лада приора | панель приборов нива | универсальная статья

00Обнаружили ошибку? Выделите ее и нажмите Ctrl+Enter..

Похожие материалы

  • Замена жидкости в гидроприводе сцепления автомобилей LADA
  • Установка датчика уровня омывающей жидкости на Лада Ларгус
  • Описание панели приборов Лада Гранта и Калина 2
  • Источник: https://xn--80aal0a.xn--80asehdb/do-my-self/repair/repair-lada-vesta/1916-zamena-i-proverka-datchika-urovnya-tormoznoy-zhidkosti-na-lada.html

    Экспертиза тестеров тормозной жидкости – журнал За рулем

    Не можешь исправить тормоза — сделай громче гудок! Народная шутка

    Часть производителей откровенно халтурят, подсовывая нам тормозную жидкость с низкой температурой кипения (ЗР, 2015, № 3; 2012, № 9).

    Ситуацию усугубляет естественная тяга любой тормозухи впитывать влагу. И чем больше в таком растворе воды, тем раньше жидкость закипит.

    Последствия крайне неприятные: педаль тормоза проваливается, автомобиль не останавливается — все шансы угодить в сводку ДТП.

    Впрочем, на прилавках имеется россыпь тестеров, которые должны помогать в оценке реального качества тормозной жидкости. Для проверки мы купили четыре прибора разных типов, но с одинаковым принципом действия: «влажность» жидкости они оценивают по электропроводности. Чем больше воды, тем меньше сопротивление.

    Brake Fluid Tester ADD7704.

    Brake Fluid Tester ADD7704.

    Brake Fluid Tester ADD7704.

    Brake Fluid Tester WH-509.

    Читайте также:  Воспроизведение звука на pic

    Brake Fluid Tester WH-509.

    Brake Fluid Tester WH-509.

    По нашей просьбе в сертифицированной лаборатории подготовили три образца тормозной жидкости, «нахлебавшейся» воды: в компанию к исходной Sintec Super DOT 4 («сухая», с массовой долей воды 0,18% жидкость из потребительской тары) добавили ее «увлажненные» варианты — с массовыми долями воды 1,0; 2,0 и 3,0%. На этом материале и выполняли экспертизу тестеров. А она показала, что из них только один можно смело рекомендовать к использованию.

    Дело в том, что сопротивление у разных тормозных жидкостей, даже заведомо годных к использованию, может быть изначально неодинаковым.

    Так, Тосол-Синтез РосДОТ 4 имеет в исходном состоянии показатели электропроводности 7–9 мкСм (микросименс), а при подмешивании воды до 2‑процентного содержания — уже 17–20 мкСм. При этом для жидкостей Federal-Mogul или Sintec Super DOT 4 прибор показывает те же 17–20 мкСм в «обезвоженном» виде.

    Очевидно, что оценивать качество жидкости подобным образом категорически нельзя — нужно знать исходные параметры конкретной тормозухи и сравнивать их с текущими параметрами.

    Портативный тестер тормозной жидкости CT-2081.

    Портативный тестер тормозной жидкости CT-2081.

    Портативный тестер тормозной жидкости CT-2081.

    Brake Fluid Tester ADD7703 — выбор ЗР.

    Brake Fluid Tester ADD7703 — выбор ЗР.

    Brake Fluid Tester ADD7703 — выбор ЗР.

    А в нашей подборке только один прибор позволяет работать с начальной калибровкой, полученной при анализе заведомо годной тормозной жидкости. Погружаем щуп в тормозной бачок, калибровочным винтом добиваемся горения первого светодиода — от этого значения и танцуем.

    Через пару-тройку лет проводим новый замер, но уже без всяких подстроек. Только вот можете ли вы представить такую ситуацию в реальной жизни? Остальные три прибора лишены возможности начальной калибровки, а потому и вовсе бесполезны.

    По крайней мере, для контроля качества тормозной жидкости в автомобиле. Кстати, проходимцы, работающие в некоторых сервисных центрах, успешно этим пользуются: засовывают щуп своего прибора в бачок (бесплатно!) и показывают клиенту горящую оранжевую лампочку — дескать, жижу надо срочно менять.

    Да, от замены хуже не будет — но зачем понапрасну тратить деньги? В том числе и на бесполезный прибор…

    Тестеры тормозных жидкостей: проверка на честность

    Ошибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter

    Источник: https://www.zr.ru/content/articles/811717-testery-tormoznyx-zhidkostej-proverka-na-chestnost/

    Индикатор уровня тормозной жидкости

    Индикатор уровня тормозной жидкости

    Современные автомобили оборудуют гидравлическим приводом тормозов, одним из недостатков которого является опасность внезапной утечки тормозной жидкости из привода, что может привести к аварии.

    Установка на автомобиль индикатора уровня тормозной жидкости создает определенное удобство в эксплуатации и значительно повышает безопасность движения.

    Индикатор может быть установлен на все типы отечественных автомобилей с гидравлическим приводом тормозов и напряжением питания 12 В с минусом на массе, в гидросистему которых залита жидкость ГТЖА-2 “Нева” ТУ6-09-550-73.

    Если в гидросистеме используется другая марка тормозной жидкости, то номиналы элементов, естественно, будут отличаться от приведенных на схеме.
    Принципиальная схема индикатора показана на рис. 1. Его основа—мультивибратор на транзисторах Т2 и Т3. Нагрузкой мультивибратора служит телефонный капсюль Тф1.

    Транзистор Т4 способствует более четкой фиксации рабочего состояния (открыт — закрыт) транзистора Т2.

    Когда щуп-датчик в бачке погружен в тормозную жидкость, на базу транзистора Т1 поступает напряжение смещения, и он открыт. При этом база и эмиттер транзистора Т2 имеют одинаковый потенциал, и этот транзистор будет закрыт.

    В результате мультивибратор не работает, а телефон Тф1 обесточен. Диод Д1 защищает базу транзистора Т2. При понижении уровня тормозной жидкости в бачке щуп оказывается в воздухе. В результате этого транзистор Т1 закрывается, а транзистор Т2 открывается. Теперь мультивибратор будет работать с частотой, определяемой постоянной времени цепочки R5C1 (около 400 Гц). Звуковой сигнал предупреждает водителя об утечке или недостаточном уровне тормозной жидкости в бачке.

    Индикатор собирают на печатной плате из фольгированного стеклотекстолита или гетинакса толщиной 1,5 мм. Чертеж печатной платы показан на рис. 2, а весь указатель в сборе — на рис. 3.
    Использовать в индикаторе германиевые полупроводниковые элементы нежелательно ввиду их низкой термостабильности. Резисторы — МЛТ-0,25, конденсатор — МБМ.

    В качестве Тф1 можно использовать электромагнитный телефонный капсюль любого типа с сопротивлением обмотки 65—1600 Ом, например ТА-4. Телефонный капсюль крепят к печатной плате следующим образом. В крышке капсюля на диаметре 35 мм сверлят два отверстия диаметром 3,3 мм с зенковкой с внутренней стороны под потайную головку винта М3.

    Крышку капсюля закрепляют двумя винтами М3 на плате со стороны элементов, затем капсюль ввинчивают в крышку. Печатную плату с телефоном помещают 8 пластмассовый или металлический корпус.

    Правильно собранный из кондиционных деталей индикатор, как правило, налаживания не требует. В отдельных случаях может понадобиться регулировка чувствительности подбором резистора R1.

    Частоту звучания регулируют изменением сопротивления резистора R5.

    Датчик монтируют в пластмассовую крышку бачка для тормозной жидкости. Один из возможных вариантов конструкции датчика показан на рис. 4. Датчик изготовлен из латуни Л62. Длина датчика зависит от расстояния от крышки бачка до отметки минимального уровня тормозной жидкости в бачке. Для автомобиля ВАЗ-2101 она равна 33—35 мм. В случае, если при установке датчика будет закрыто вентиляционное отверстие в крышке бачка, рядом с датчиком необходимо просверлить отверстие диаметром 1,5 мм для сообщения внутренней полости бачка с атмосферой.

    Если бачок для тормозной жидкости или трубопровод, идущий от бачка, металлические, то больше никаких доработок бачка делать не надо. Если же бачок и трубопровод сделан из неметаллических материалов (например, у автомобилей ВАЗ), то тормозную жидкость, находящуюся в бачке, необходимо электрически соединить с массой автомобиля.

    Для этого в бачке в любой точке ниже минимального уровня тормозной жидкости необходимо просверлить отверстие диаметром 4,1 мм, вставить в отверстие винт М4 с цилиндрической головкой, проложив с обеих сторон стенки бачка уплотняющие резиновые и металлические шайбы, и соединить винт с массой гибким многожильным проводом (МТБ, БПВЛ и др.

    ) сечением 0,35—0,5 мм2.

    Эта необходимость вызвана следующим. Хотя на отечественных автомобилях всех типов тормозная жидкость электрически соединена с корпусом автомобиля (металлический главный тормозной цилиндр, металлические трубопроводы и пр.

    ), точка ее соединения в некоторых случаях находится далеко от датчика, поэтому электрическое сопротивление столба жидкости на участке датчик — корпус составляет единицы мегом.

    Так, в автомобилях ВАЗ полиэтиленовый бачок соединяется с главным тормозным цилиндром диэлектрическим трубопроводом, и сопротивление участка датчик — корпус в автомобилях этого типа оказывается настолько велико, что транзистор 77 не открывается.

    Читайте также:  Схема управления насосом — дозатором

    Для автомобилей “Москвич-408”, “Москвич-412” заземлять жидкость нет необходимости — бачок расположен непосредственно на главном тормозном цилиндре, и жидкость контактирует с корпусом близко от датчика, поэтому сопротивление этого участка невелико.

    Замыкания по стенкам бачка между датчиком и корпусом не происходит ввиду большого сопротивления этого участка даже при максимально возможном наличии остатков жидкости на стенках.

    Кроме того, бачки, изготовленные из пластических масс, плохо смачиваются жидкостью, а стенки бачка расположены вертикально. Поэтому, как показал опыт, можно расположить в крышке бачка два датчика, и один из них соединять с корпусом.

    Однако расстояние между датчиками для большей надежности работы устройства не следует делать менее 15 мм.

    В этом случае налаживание устройства сводится к выбору оптимальной чувствительности подбором резистора R1. В некоторых случаях при значительном остатке жидкости на крышке может незначительно измениться частота генерации мультивибратора.

    При установке в крышку бачка двух датчиков можно использовать один и тот же индикатор для контроля уровня тормозной жидкости в бачке и охлаждающей жидкости в радиаторе.

    Для этого в радиатор (или в расширительный бачок) устанавливают аналогичный датчик, изолированный от корпуса, и все датчики соединяют последовательно: один датчик в крышке бачка для тормозной жидкости соединяют со входом индикатора, другой — с датчиком уровня жидкости в радиаторе.

    При падении уровня жидкости в бачке или в радиаторе цепь размыкается, и индикатор предупреждает об этом звуковым сигналом.Раздел: [Приборы]

    Источник: http://www.cavr.ru/article/4590-indikator-urovnya-tormoznoj-zhidkosti

    Что означают индикаторы приборной панели

    На приборной панели любого автомобиля расположено большое количество разных индикаторов. Что обозначает каждый из них? Давайте вместе изучим их назначение. Индикаторы подскажут нам о возникновении проблем в автомобиле и помогут автолюбителю быстро сориентироваться в возникшей ситуации и принять правильное решение.

    Рассмотрим основные индикаторы. Начнем по порядку.

    1. Индикатор уровня тормозной жидкости

    Загорание этой лампочки на панели означает снижение уровня тормозной жидкости в рабочей тормозной системе автомобиля. Как известно, тормозная система – это одна из важнейших систем авто и ее исправная работа является гарантией безопасности на дороге.

    Причиной снижения тормозной жидкости в системе может быть износ тормозных колодок. В таком случае, придется их заменить. Для начала, чтобы добраться до гаража или сервисного центра нужно долить тормозную жидкость в бачок.

    Еще одной причиной снижения тормозной жидкости может быть повреждение вакуумного усилителя или одного из контуров тормозной системы. Ремонт или замену вакуумного усилителя можно сделать своими руками. А вот ремонт контура лучше производить в СТО, своими руками такие работы сделать будет непросто, т.к. нужно поднимать автомобиль.

    2. Индикатор давления моторного масла

    Моторное масло необходимо для создания и поддержания масляного клина в подшипниках, а также для смазки и охлаждения поршней. Сухое трение при недостаточном давлении масла грозит им моментальным износом. Сначала коленвал начинает болтаться во вкладышах. При этом издается характерный стук. Затем поверхности поршней начинают задираться, и двигатель может полностью заклинить.

    Поэтому при загорании индикатора давления масла нужно немедленно остановиться, заглушить двигатель и проверить уровень масла. При необходимости нужно долить масло и проверить его уровень щупом.

    3. Индикатор перегрева двигателя

    Системы охлаждения современных автомобилей герметичны, работают при избыточном давлении и довольно хорошо справляются с охлаждением двигателя. Но по мере эксплуатации могут возникнуть разные неполадки, например, загрязнение радиатора или выход из строя насоса. Мотор начинает перегреваться и последствия могут быть очень серьезными.

    Если на приборной панели загорелся индикатор перегрева двигателя, остановитесь, дождитесь, когда двигатель остынет и залейте в систему охлаждения антифриз. Бывалые водители советуют проверить наличие воздушных пробок в системе. Для этого нужно снять с патрубка шланг или открыть штуцер. Вернувшись из поездки, обязательно выясните причину перегрева двигателя.

    4. Индикатор «проверь двигатель»

    Это индикатор электронной системы управления двигателем автомобиля и срабатывает при ее неисправностях.

    Основной причиной являются пропуски вспышек, из-за которых в систему выпуска попадает большое количество паров несгоревшего топлива. Оно дожигается в нейтрализаторе и быстро выводит его из строя.

    В современных двигателях система диагностики автоматически выключает форсунку неработающего цилиндра. Но индикатор будет гореть до устранения причины.

    Самостоятельно вы сможете проверить лишь работоспособность свечи зажигания. Полностью установить причины повреждения вам поможет специальная диагностика. Поэтому считайте коды неисправности и обращайтесь на СТО.

    5. Индикатор накаливания свечей

    Такой индикатор устанавливается только на дизельных автомобилях и сигнализирует о нагреве свечой камеры сгорания. При неисправности системы мотор может не завестись в холодное время года.

    Чтобы правильно завести двигатель, советуем ориентироваться по индикатору. Включив зажигание, нужно подождать пока погаснет индикатор и лишь после этого запускать двигатель.

    6. Индикатор разрядки аккумулятора

    Индикатор срабатывает  в случаях, когда аккумулятор перестает заряжаться. Если индикатор загорелся вам нужно остановить машину и отсоединить на 5-10 секунд клеммы от аккумулятора.

    Если при этом заглохнет двигатель, это означает неисправность генератора. Внимательно осмотрите ремень привода генератора: он должен быть достаточно натянут и не должен проскальзывать, а шкив генератора должен быть холодным.

    Нужно также осмотреть разъемы генератора и предохранителей.

    Возможно, что вышел из строя предохранитель. Чтобы экономно расходовать заряд аккумулятора отключите все электрические приборы в автомобиле: аудиосистему, печку, фары. Можно продолжить движение на аккумуляторе до ближайшего СТО.

    7. Индикатор снижения топлива в бензобаке

    Срабатывание этого индикатора означает, что в баке заканчивается топливо. Единственным советом в данном случае является поездка на ближайшую заправочную станцию. В зависимости от типа двигателя, нормы расхода топлива и объема двигателя одной заправки полного бака топлива хватает на 400-1000 км. Индикатор может загораться также на косогорах или при поворотах из-за колебания топлива в баке.

    И совет от бывалых: внимательно изучите все подсказки в вашей машине и не игнорируйте их. Исправный автомобиль — гарантия вашей безопасности!

    Что еще почитать?

    Источник: http://automexanik.ru/elektrika/chto-oznachayut-indikatoryi-pribornoy-paneli.html

    Источник

    Спасибо за чтение статей на сайте

Двойной удар: airplay-pi и новая жизнь старого радио

Двойной удар: airplay-pi и новая жизнь старого радио

Двойной удар: AirPlay-Pi и новая жизнь старого радио

В проекте описана модернизация старого ретро-радиоприемника для прослушивания онлайн радио через интернет

В данном проекте сначала выполняется настройка Raspberry Pi для использования ‘AirPlay’. Во второй части я расскажу, как я вдохнул новую жизнь в свое старое радио.

Шаг 1: Сборка всех необходимых компонентов

Требуемые компоненты:
– Raspberry Pi (модель B или более поздняя, поскольку потребуется наличие Ethernet соединения) – Ethernet кабель – SD карта – Кабель питания для Pi – Аудио устройство для воспроизведения (динамики, наушники и т.д.)

– Средство записи на SD карту, то есть переносной компьютер или стандартный ПК.

Дополнительные компоненты:
– Отсутствуют, за исключением USB флешки. На ней хранится музыка, и ее необходимо будет вставлять в Pi.

Перед продолжением убедитесь, что SD карта полностью отформатирована.

Шаг 2: Запись программы на SD карту

Сейчас не все знают, как правильно это сделать, поэтому я попытаюсь подробно описать данную процедуру.

Сначала, обратитесь к Volumio, щелкните на кнопку загрузить, расположенную вверху. Перейдите на страничку ‘sourceforge’ для загрузки файла. Скопируйте файл на рабочий стол. Так проще будет выполнить следующий шаг.

Далее, перейдите к разделу ‘Flash it’ и щелкните ‘Win32DiskImager’ (помечен серым цветом), затем на надпись ‘Download and extract’. Подождите, пока загрузится следующий сайт, нажмите загрузить, после этого скопируйте файл также на рабочий стол.

Ну вот, теперь на рабочем столе заархивированный файл и Win файл.

Щелкните правой кнопкой на файле ‘VolumioPI.img’ и выберите из контекстного меню извлечь сюда. После завершения операции разархивирования появится новый файл.

Выньте из вашего ПК все неиспользуемые флешки и карты памяти, оставив только SD карту в Pi.

Запустите программу ‘Win32DiskImager’, которая была загружена ранее: – Щелкните на синей папке, перейдите на рабочий стол и откройте извлеченный файл ‘VolumioPI’.

– Далее из выпадающего списка устройств выберите SD карту, на которую необходимо записать файл (в моем случае это диск H:), при этом будет выдано предупреждение, нажмите «да» для продолжения операции.

– Подождите окончание процесса, затем извлеките SD карту.

Шаг 3: Настройка Pi

На первом шаге я забыл указать, что программа загружается автоматически. Поэтому от вас не требуется каких-либо дополнительных действий.

Если при загрузке программы подсоединен HDMI кабель, тогда звук будет передаваться по нему. Поэтому, если к монитору или телевизору, к которым подсоединен кабель, подключены колонки, тогда звук будет передаваться через 3.5 мм выход (выход на наушники).

Если вы хотите просто использовать 3.5 мм гнездо, тогда лучше всего вынуть HDMI кабель.

Процесс настройки следующий: – Вставьте SD карту в микрокомпьютер Pi, – Соедините Ethernet выход с роутером или сплиттером – (Если хотите, подсоедините HDMI сейчас) – Последним подсоедините кабель питания.

При загрузке будет создан отдельный директорий, к которому можно иметь доступ с другого компьютера этой сети.

Шаг 4: Доступ к Pi с другого компьютера

После выполнения всех настроек, загрузки кода в Pi и подсоединения к сети, откройте новую вкладку в вашем браузере и в адресной строке наберите ‘http://volumio.local/’ или ‘volumio.local/’. Далее должна загрузиться новая страница, которая выглядит так, как показано на изображении ниже.

Здесь можно нажать на ‘Browse’, далее ‘WebRadio’, затем щелкнуть справа от станции, потом на ‘Add and play’.

В результате этого станция будет добавлена в плейлист и начнется воспроизведение музыки.

Для изменения порядка нажмите вкладку ‘Playlist’, которая расположена внизу, а для изменения уровня громкости нажмите на кнопку ‘Playback’ в середине.

Шаг 5: Заключительный этап

Я выбрал старое радио, в котором есть плеер для кассет, располагаемый сбоку. Используя конвертер ‘CD – кассетный адаптер’, который представляет собой обычный кассетный плеер с 3.5 мм выходом, мне не придется больше вносить какие-либо изменения.

Сначала я проложил кабель внутрь корпуса до установки кассетного плеера. Поэтому все соединения располагаются внутри радио.

Вверху радио есть много места, где можно разместить микрокомпьютер Pi и подсоединить его к аудио устройству, далее подключить к сети Интернет и начать слушать онлайн музыку.

Оригинал статьи

Источник: http://cxem.net/arduino/arduino150.php

Pi-Sonos v2.0 или эволюция интернет-радио на Raspberry Pi

Как известно, нет предела совершенству. Даже для самодельной портативной акустики, чья аудитория пользователей включает только одного человека. Весьма требовательного и местами маниакально упорного человека. После выхода первого поста про Pi-Sonos прошло почти 5 месяцев. За это время софт внутри этой акустики успел дважды кардинально поменяться.

Поводом для изменений послужили как полезные советы хабравчан, так и собственный UX.

Немного истории для тех, кому лень читать или кто уже забыл первую статьюPi-Sonos – это самодельная компактная акустика, на создание которой меня вдохновила Sonos Play 1.

Задача этой акустики, прежде всего, была в том, чтобы воспроизводить музыку из интернет-радиостанций. При ее создании я поставил во главу угла минимализм и удобство: воткнул в розетку, а дальше в любом месте дома управляй музыкой со смартфона/компа/планшета.

О чем эта статьяПрежде всего, об упорстве и любознательности на пути к идеалу.

Под катом, username, не будет ни решения какой-то глобальной проблемы, ни описания новой уникальной технологии. В статье, всего лишь, излагается сравнение популярных медиа-центров для Raspberry Pi, раскрываются их достоинства и недостатки, а также мое персональное видение оптимального фреймворка для интернет-радиоприемника.

По сути, прорабатывая собственный софт для колонки, я всего лишь частично повторил путь создателей Volumio, просто реализовав с нуля всего одну из его функций (читай: “изобрел очередной велосипед”). Несмотря на то, что статья затрагивает тему разработки ПО, кода в ней нет, потому что цель статьи описать идею и функционал, а не процесс его реализации.

Если тема кода будет интересна хабравчанам, я постараюсь осилить отдельную статью с описанием процесса разработки.
Изначально софтовой начинкой акустики был OSMC, но мудрые люди в комментариях обратили внимание на то, что Kodi (aka OSMC) – слишком жирно в качестве «мозгов» для интернет-радио станции.

Слишком он умный и большой, только для аудио-проектов лучше подойдет Volumio. Собственно, все так и оказалось. Volumio легче, заточен под веб-интерфейс и имеет более продвинутый и удобный в разработке API. Также отпала необходимость в торчащем сзади кабеле HDMI, поскольку Volumio полностью настраивается в любом браузере.

Однако, и у Volumio обнаружилась пара важных недостатков, подвигнувших меня на дальнейшее исследование. Это, во-первых, время загрузки, и во-вторых, отсутствие автовоспроизведения.

После изучения официальной документации (из которой можно понять, что Volumio — это надстройка над mpd (Music Player Daemon)), я решил, что пришло время написать на js собственную обертку под названием RPi-Radio, которая решала бы эти проблемы. Серверная ее часть работает на Node.js, а клиентская часть (GUI), использующая React.js, была готова еще со времен использования OSMC, ее нужно было только немного подправить. Так это выглядит на экране смартфона в настоящее время:

Ниже приведена табличка, наглядно показывающая недостатки и преимущества каждого из фреймворков.

КритерийOSMCVolumioRPi-Radio

Время загрузки 35 сек 45 сек 20 сек
Автовоспроизведение при запуске нет* нет* да
Кол-во тапов из главного экрана «родного» GUI на смартфоне для выбора радиостанции из списка Favorite** 5+1 скролл 4 1
Необходимость в мониторе, клавиатуре и мыши*** да нет нет
Веб-управление частичное полное частичное
Редактирование списка станций так себе норм так себе
Удобство первоначальной настройки так себе отлично средненько
Интеграция с моим GUI для управления со смартфона с костылями с костылями из коробки
Удобство ежедневного использования ☆☆ ☆☆☆

* на самом деле да, но надо делать костыль и подсовывать его автозагрузку Raspbian; в случае с OSMC костыль пишется на python, а в случае с Volumio — на js или bash. Но в обоих случаях оно все равно работает не так, как бы хотелось.
** для OSMC и Volumio это очень важные параметры, ведь все эти тапы-скроллы необходимо делать каждый раз при включении колонки. Для RPi-Radio этот параметр хоть и минимален, но все равно не так важен, поскольку колонка начинает играть сама при включении.
*** имеется ввиду физическое подключение монитора, клавиатуры и мыши к самой Raspberry Pi, т.е. те случаи, когда нет возможности обойтись встроенным веб-интерфейсом или подключением по ssh.Под этим спойлером спрятано подробное пояснение каждого из пунктов сравнения.Время загрузки 20 секунд – это, по моему мнению, минимум, который можно достичь, не погружаясь в дебри оптимизации Raspbian под этот проект. Именно столько времени требуется «малинке», чтобы загрузить ОС и запустить сервис mpd. Вероятно, этот результат может быть улучшен, если заменить microSDHC на microSDXC с большей скоростью чтения/записи (проверю при возможности). Удивительно, но Volumio, притворяющийся легким и шустрым, грузится дольше монстра-комбайна OSMC. 45 секунд ожидания находятся за порогом комфортной эксплуатации, и это было основной причиной ухода от Volumio. Автовоспроизведение присутствует в mpd из коробки, мне не пришлось ничего делать для его активации – удобно! В Volumio, хотя он и является оберткой mpd, эту функцию придушили ради красивого звука приветствия. Как я уже писал, можно сделать скрипт и положить его в автозагрузку. Аналогичная ситуация и у OSMC. У OSMC большая часть взаимодействия с пользователем происходит через монитор: есть красивый интерфейс, возможность смотреть видео, картинки, читать новости и смотреть погоду – много всего, чего моя колонка никогда в жизни делать не будет. А вот веб-управление у OSMC очень ограниченно, и удаленно даже нельзя настроить список любимых станций в плагине Radio – только через монитор. У Volumio – наоборот, все только через веб-интерфейс. Редактировать список станций удобнее всего в браузере на десктопе/лэптопе, но можно и на смартфоне при желании. У RPi-Radio через веб-интерфейс можно только выбирать станцию и регулировать звук. Список станций, да и вообще все остальное надо делать через консоль по ssh. Со списком станций сложнее всего: если у OSMC и Volumio есть свои обширные библиотеки интернет-радиостанций, то в RPi-Radio мне пришлось забивать адреса своих любимых станций вручную в формате JSON. Неудобно, но всего один (или несколько) раз в жизни. С первоначальной настройкой хуже всего у OSMC. Сначала надо подключить к «малине» монитор и настроить плагин Radio, потом надо еще через консоль или по ssh настроить вывод звука на внешний ЦАП IQAudio (тот, что у платы Suptronics X400). У RPi-Radio настройка ЦАП такая же, но хотя бы все остальное делается тоже по ssh. Лидер в этой номинации, безусловно, Volumio – для вывода звука через внешний ЦАП надо просто в меню настроек выбрать соответствующий пункт из выпадающего списка. Сравнение есть даже на официальном сайте Suptronics (http://www.suptronics.com/xseries/x400.html)

Читайте также:  Управление светодиодами с помощью балласта от люминесцентной лампы

GUI в RPi-Radio представляет собой простенькую веб-страничку, реализованную на React.js. Серверная часть, отвечающая за взаимодействие между клиентским GUI и mpd, работает на Node.js и представляет собой простенький HTTP- и WebSocket- сервер на базе связки Socket.io + http + express. Она запускается на Raspbian в качестве сервиса при включении системы сразу после старта сервиса mpd и для управления mpd использует модуль mpc-js. Клиентский GUI доступен любому браузеру в моей домашней сети просто по ip или hostname «малинки». Идеально.

Исходники RPi-Radio опубликованы на Github. В том же репозитории, в соответствующих бранчах, можно найти обе адаптации GUI для работы с OSMC и Volumio.

Результат моих экзерсисов, RPi-Radio, выходит за рамки простого дополнения к какой-то колонке, существующей в единственном экземпляре.

Это в своем роде готовое решение, которое превращает в интернет-радиоприемник не только Raspberry Pi, но и любое устройство с аудио-выходом, доступом в Интернет и возможностью запуска mpd и Node.js.

Основным достоинством такой системы является отсутствие всего лишнего. Собственно, как это сделано и в Sonos, в том идеале, который я стремлюсь достичь.

Источник: https://habr.com/post/410227/

iOS 11.4 поддерживает создание стереопар и многокомнатную аудиосистему на основе AirPlay 2

HomePod появится в Канаде, Франции и Германии начиная с июня 2018 г.

HomePod поддерживает создание стереопар и многокомнатную аудиосистему после бесплатного обновления до iOS 11.4.

Уникальная беспроводная колонка Apple HomePod позволяет наслаждаться музыкой в любой точке дома благодаря поддержке стереопар HomePod и новой многокомнатной аудиосистемы в iOS 11.4. Это бесплатное обновление программного обеспечения включает самую передовую и удобную беспроводную многокомнатную аудиосистему на основе AirPlay 2.

Вы можете проигрывать музыку в одной комнате, будучи в другой комнате, а еще сделать так, чтобы музыка перемещалась по дому, или воспроизводить везде одну и ту же песню, используя устройство iOS, HomePod, Apple TV или просто попросив Siri.

HomePod уже продаётся в США, Великобритании и Австралии и будет доступна в Канаде, Франции и Германии начиная с июня 2018 г.1

iOS 11.4 упрощает управление музыкой в разных комнатах с помощью HomePod, Apple TV или любого устройства iOS.

HomePod сочетает в себе новейшие технологии звукового оборудования и программного обеспечения Apple для создания потрясающе чистого и объёмного звука, устанавливая новый стандарт качества для небольших колонок.

Колонка оснащена разработанным в Apple большим сабвуфером, который обеспечивает глубокое и чистое звучание басов. В HomePod также предусмотрен специальный блок из семи направленных высокочастотных динамиков, которые отвечают за чистоту звучания верхних частот и невероятно точный контроль направления звука.

Мощные встроенные технологии позволяют сохранить те эффекты и насыщенность звучания, которых хотели добиться авторы записи.

Стереопары расширяют звуковую сцену для достижения невероятного качества звука на HomePod.

Установка двух HomePod в качестве стереопары позволяет расширить звуковую сцену и заполнить комнату более объёмным звуком, чем можно ожидать от традиционной пары колонок высотой около 15 сантиметров.

Используя технологию ориентации в пространстве, каждая колонка HomePod определяет, в какой части комнаты она расположена, и автоматически настраивает звук для отличного звучания независимо от своего местоположения.

Для связи друг с другом и абсолютно синхронного воспроизведения музыки колонки используют технологию беспроводного однорангового прямого соединения Apple.

В каждой колонке HomePod установлен чип A8, так что колонка может воспроизводить собственный аудиоканал — левый или правый — и при этом разделять энергию фонового и прямого звука.

Этот инновационный подход к созданию стереозвука обеспечивает широкую, почти трёхмерную звуковую сцену для получения невероятного качества звука в любой точке комнаты.

Стереопара HomePod заполняет комнату звуком с более глубокими басами для более точного воспроизведения низких частот.

Настроить стереопару очень просто. Когда пользователь устанавливает в комнате вторую колонку HomePod, ему предлагается создать стереопару — и уже через несколько минут комнату заполняет потрясающий звук. Несмотря на то что обе колонки HomePod работают как одна, они связываются друг с другом, и на запросы Siri реагирует только одна колонка.

AirPlay 2 и многокомнатная аудиосистема

Пункт управления позволяет быстро посмотреть, что играет в каждой комнате, и содержит простые элементы управления для изменения громкости и выполнения других действий.

AirPlay 2 позволяет создать передовую беспроводную многокомнатную аудиосистему для удобной передачи музыки или подкастов из любой точки дома на разные устройства, работающие абсолютно синхронно.

Во время прослушивания музыки достаточно выбрать или отменить выбор устройств, на которых воспроизводится музыка, через Пункт управления или попросить Siri играть музыку в нужной комнате, группе комнат или по всему дому. HomePod автоматически поддерживает функции AirPlay 2, так что музыку можно транслировать по всему дому без необходимости вручную группировать колонки.

Элементы управления AirPlay 2 доступны во всех приложениях iOS и Пункте управления, так что вы легко можете контролировать воспроизведение в каждой комнате, на каждом динамике.

А подписчики Apple Music могут попросить Siri поставить разные песни в разных комнатах или одну и ту же песню по всему дому, даже не выходя из комнаты.

HomePod — точно так же как iPhone и iPad — сможет связываться с другими колонками с поддержкой AirPlay 2 по мере их появления, так что Siri сможет управлять воспроизведением музыки на колонках Bang & Olufsen, Bluesound, Bose, Bowers & Wilkins, Denon, Libratone, Marantz, Marshall, Naim, Pioneer и Sonos.

Благодаря AirPlay 2 вы можете попросить Siri воспроизвести музыку в любой комнате, используя любое устройство iOS или HomePod.

Голосовой помощник Siri, активно используемый более чем на полумиллиарде устройств, прекрасно разбирается в музыке и понимает личные предпочтения и вкусы пользователей.

Если включить на HomePod функцию личных запросов, Siri может отправить сообщение, добавить напоминания и заметки, а также проверить в календаре назначенные встречи.

2 А ещё Siri может установить таймер, воспроизвести подкаст, проверить новости и спортивные события, посмотреть ситуацию на дорогах и прогноз погоды и управлять обширным набором аксессуаров умного дома HomeKit.

Чтобы узнать больше об особенностях работы с iOS 11.4, используйте приложение «Советы» на iPhone или iPad. Подробнее об обновлении HomePod можно узнать на странице поддержки Apple.

Цены и доступность

  • HomePod доступна в белом цвете и цвете «серый космос» по цене 349 долларов США в США, Великобритании и Австралии и будет доступна в Канаде, Франции и Германии начиная с понедельника 18 июня. HomePod будет продаваться в магазинах Apple Store, на сайте apple.com, в приложении Apple Store и у некоторых авторизованных реселлеров Apple.
  • Для использования HomePod требуется iPhone 5s или новее, iPad Pro, iPad Air или новее, iPad mini 2 или новее либо iPod touch (6-го поколения) с iOS 11.2.5 или новее. Стереопары и многокомнатные аудиосистемы доступны при использовании iOS 11.4.

Изображения iOS 11.4 и HomePod

1 Поддержка французского языка (Канада) будет добавлена позже в этом году в качестве бесплатного обновления программного обеспечения.
2 Поддержка Календаря будет доступна в Канаде, Франции и Германии позже в этом году.

Источник: https://www.apple.com/ru/newsroom/2018/05/ios-11-4-brings-stereo-pairs-and-multi-room-audio-with-airplay-2/

AirPlay 2: все, что нужно знать

В iOS 11.4 появилась новая функция: AirPlay 2. С ней вы можете воспроизводить музыку с iPhone и iPad на нескольких колонках в разных уголках своего дома. В этой статье мы расскажем всё, что нужно знать о новой технологии.

AirPlay — это фирменная технология Apple, которая появилась в ноябре 2010 года. Она позволяет передавать музыку без проводов с iPhone, iPad или Mac через Wi-Fi.

С AirPlay работают многие современные колонки и ресиверы. На упаковке устройств, поддерживающих технологию, обычно есть такой значок:

Для передачи аудиосигнала без проводов AirPlay использует не Bluetooth, а именно Wi-Fi. У последней канал для информации гораздо шире, поэтому качество музыки выше.

Также через AirPlay можно транслировать видео на большой экран телевизора. Посредником в этом выступает Apple TV.

AirPlay 2 добавляет поддержку нескольких аудиоустройств

29 мая 2018 года для iPhone и iPad стала доступна iOS 11.4. В ней представлено второе поколение AirPlay. Оно даёт возможность воспроизводить музыку на нескольких аудиоустройствах одновременно.

Например, вы можете отправить с iPhone композицию не только на колонку в спальне, но и на ресивер в гостиной. При этом звук на них будет идеально синхронизирован.

Вы также можете воспроизводить разную музыку на разных колонках. Например, вы можете просто попросить Siri играть одну композицию на аудиоустройстве в первой комнате, а другую во второй. Это возможно только при использовании Apple Music.

Когда вы начнете использовать аудиоустройства, которые поддерживают технологию AirPlay 2, то сможете переключать треки и регулировать громкость каждой из них в «Пункте управления» прямо с экрана блокировки или с домашнего экрана, а также из соответствующего меню из Apple Music и сторонних приложений.

Когда вы развернете меню AirPlay, то сразу увидите не только полный перечень колонок и ресиверов с поддержкой технологии, которые находятся поблизости, но и музыкальную композицию, которая воспроизводится на каждом из аудиоустройств.

Для начала воспроизведения вы можете выбрать колонку или ресивер из перечня обычным нажатием, а после индивидуально отрегулировать громкость проигрывания с помощью появившегося ползунка.

AirPlay 2 упрощает совместный контроль воспроизведения музыки

С помощью AirPlay 2 сразу несколько пользователей могут добавлять песни в список воспроизведения — каждый со своего iPhone.

Представьте, что вы на вечеринке, где играет музыка через AirPlay 2. Вы, как и другие гости вечеринки, сможете добавлять песни в общий плейлист с помощью кнопки «Воспроизвести далее».

Таким образом, AirPlay 2 избавляет вас от необходимости подключать каждый iPhone к колонкам.

С AirPlay 2 музыка не прервется, если вам кто-то позвонит

AirPlay 2 дает возможность использовать iPhone или iPad на 100%, даже если он выступает источником воспроизведения.

Например, музыку в доме не остановит ответ на входящий вызов или запуск новой игры из App Store вроде Magibot или The Bonfire: Forsaken Lands.

Какие устройства будут работать с технологией AirPlay 2

С AirPlay 2 работают следующие мобильные устройства Apple на базе iOS 11.4 и новее:

  • iPhone 5s и новее;
  • iPad Air и iPad Air 2;
  • iPad mini 2 и новее;
  • iPad 2017 и iPad 2018;
  • iPad Pro всех поколений;
  • iPod touch 6-го поколения.

После обновления ПО аудиоустройств поддержку AirPlay 2 получат:

  • Bang & Olufsen Beoplay A6, Beoplay M3 и Beoplay A9 mk2;
  • BeoSound 1, 2, 35, Core, Essence mk2;
  • BeoVision Eclipse;
  • Denon AVR-X3500H, AVR-X4500H, AVR-X6500H;
  • Libratone Zipp, Zipp Mini;
  • Marantz AV7705, NA6006, NR1609, SR5013, SR6013, SR7013;
  • Naim Mu-so, Mu-so QB, Uniti Atom, Uniti Nova, Uniti Star, ND 555, ND5 XS 2, NDX 2;
  • Sonos Play:5, One, Playbase.

Читайте также:  Управление irobot create с помощью беспроводного геймпада через arduino

AirPlay 2 также работает с Apple TV на tvOS 11.4 и выше, а также с колонкой Apple HomePod. Технологию будет поддерживать большинство новых аудиоустройств, предназначенных для помещения, от Bang & Olufsen, Naim, Sonos и других производителей.

Всеми аудиоустройствами, которые получат поддержку AirPlay нового поколения, можно будет также управлять через приложение «Дом».

Источник: https://www.re-store.ru/blog/obzory/airplay-2-vse-chto-nuzhno-znat/

AirPlay 2: всё, что нужно знать о потоковой технологии Apple

В июне 2017 на конференции для разработчиков WWDC Apple представила новые версии операционных систем iOS 11 и macOS High Sierra, watchOS 4, iPad Pro, iMac Pro и новые MacBook. Не самой громкой, но одной из важнейших новинок стал фирменный протокол потоковой передачи данных AirPlay 2. Что это, зачем и для чего нужно — разбираемся.

Что такое AirPlay и как это работает?

AirPlay — это беспроводная технология передачи медиафайлов (аудио, видео и изображения) по локальной сети между продукцией компании Apple и другими совместимыми устройствами. Технология появилась в 2010 году, заменив AirTunes, которая передавала только аудио и была закрытой. AirPlay же разрешено лицензировать и встраивать в продукцию сторонних производителей. Например, в умные колонки.

Совместимые устройства должны находится в одной сети Wi-Fi, то есть стримить музыку из другого города на свою домашнюю колонку не получится.

Подключение быстрое и интуитивное — нажал пару раз и фильм с iPhone уже на телевизоре через Apple TV. Основных сценариев использования AirPlay по сути четыре: трансляция видео, просмотр изображений, стриминг музыки и повтор экрана.

Да, устройства на iOS могут передавать рабочий стол на Apple TV, вклюая любые приложения и игры.

Совместимые устройства условно можно разделить на две категории: отправители и приёмники.

Отправители:

  • Компьютеры с установленным iTunes.
  • iPhone, iPad и iPod на iOS 4.2 или более поздней версии.
  • Компьютеры Mac с macOS Mountain Lion или более поздней версии.
  • Apple TV.

Приёмники:

  • AirPort Express.
  • Apple TV.
  • Apple HomePod.
  • Любые сторонние устройства с поддержкой AirPlay.

А что тогда AirPlay 2?

Самое крупное обновление потоковой технологии с 2010 года, которое анонсировали на конференции WWDC 2017. AirPlay 2 транслирует звук одновременно на несколько устройств. Это так называемый «мультирум».

Обновление должно было выйти с релизом колонки HomePod, но функцию отложили на неопределённый срок. Однако в бета-версиях iOS 11.3 и tvOS 11.3, релиз которых состоится весной, технология появилась.

Какие устройства Apple поддерживают AirPlay 2?

iPhone:

  • iPhone X
  • iPhone 8 Plus
  • iPhone 8
  • iPhone 7 Plus
  • iPhone 7
  • iPhone 6S
  • iPhone 6S Plus
  • iPhone 6
  • iPhone 6 Plus
  • iPhone SE
  • iPhone 5S

iPad:

  • 12,9″ iPad Pro (оба поколения)
  • 9,7″ iPad Pro
  • 10,5″ iPad Pro
  • iPad (пятое поколение)
  • iPad Air 2
  • iPad Air
  • iPad mini 4
  • iPad mini 3
  • iPad mini 2

iPod touch:

  • iPod touch (шестое поколение)

Apple TV:

Компьютеры Mac:

  • MacBook: Late 2009 или новее
  • iMac/iMac Pro: Late 2009 или новее
  • MacBook Air: 2010 или новее
  • MacBook Pro: 2010 или новее
  • Mac mini: 2010 или новее
  • Mac Pro: 2010 или новее

Проще говоря, устройства, выпущенные более семи лет назад поддерживаться не будут.

Что нового в AirPlay 2?

AirPlay 2 будет одновременно транслировать звук на несколько Apple TV, стоящие в разных комнатах, или несколько колонок HomePod, или HomePod и Apple TV — возможных комбинаций масса и всё зависит только от пользователя и устройств, которыми он владеет.

Прямо на iPhone в приложении «Дом» можно будет выбирать нужные гаджеты и регулировать громкость отдельно для каждого из них. Apple TV 4 с tvOS 11.3 также сможет подключаться к колонкам.

Apple не уточнила, поддерживает ли AirPlay 2 отправку разных музыкальных композиций на разные источники звука.

По факту можно организовать целую аудиосистему, прикупив в каждую комнату по одному HomePod. Но Apple никак не ограничивает выбор устройств — мультисистему можно построить из совместимых устройств разных производителей. Так, AirPlay 2 будет одновременно стримить звук и на HomePod, и на какую-нибудь колонку Bose или Beats.

Кроме того, специально для совместного использования или для вечеринок был добавлен плейлист, в который любой пользователь сможет добавить свою музыку. Она воспроизведётся в порядке очереди.

AirPlay 2 интегрирована в HomeKit. По приходу домой вместе с включением освещения (если у вас есть «умные» лампочки) будет включаться и музыка. Также можно установить таймеры автоматического воспроизведения, чтобы создать видимость присутствия людей в доме.

Старые колонки будут работать с AirPlay 2?

Будут, но не все. Компании Naim и Libratone уже подтвердили, что ПО их текущих колонок обновится и будет поддерживать новую технологию. Чего не скажешь о продуктах Bowers & Wilkins — A5, A7 и Zeppelin Air по-прежнему будут работать с AirPlay, но новые функции «мультирума» использовать не смогут.

Список брендов, которые объявили о поддержке AirPlay 2:

  • Bang & Olufsen
  • Beats
  • Bluesound
  • Bose
  • Bowers & Wilkins
  • Definitive Technology
  • Denon
  • Devialet
  • Libratone
  • Marantz
  • McIntosh
  • Naim
  • Polk

AirPlay первой версии продолжит работать?

Да.

Источник: https://rozetked.me/articles/1126-airplay-2-vse-chto-nuzhno-znat

AirPlay и Raspberry Pi

3 февраля 2015, 23:02

Если вы являетесь владельцем продукции от Apple, будь то айфон, айпад или мак, вы наверное уже знаете о технологии беспроводной потоковой передачи медиаданных под названием AirPlay. Сегодня я покажу как установить и настроить AirPlay сервер на Raspberry Pi.

Утилита с помощью которой все это можно будет проделать называется Rplay от ребят из VMLite. Они ее распространяют абсолютно бесплатно, но нужно получить ключ у них на форуме.

Перейдем непосредственно к установке:

1 Обновляем прошивку

sudo apt-get install rpi-update sudo rpi-update

2 Графическому чипу необходимо выделить как можно больше памяти, выделяем 256 Мб если у вас модель B и 64 или 128 МБ если у вас модель А:

sudo raspi-config

Меню Advanced Options — Memory Split

3 Устанавливаем пакеты необходимые для работы Rplay:

sudo apt-get update sudo apt-get install libao-dev avahi-utils libavahi-compat-libdnssd-dev libva-dev youtube-dl sudo youtube-dl –update

4 Загружаем и устанавливаем Rplay:

wget -O rplay-1.0.1-armhf.deb http://www.vmlite.com/rplay/rplay-1.0.1-armhf.deb sudo dpkg -i rplay-1.0.1-armhf.deb

Пакет установится в /usr/bin/rplay и автоматически запустится и всегда будет запускаться при запуске.

5 Для ручного запуска и остановка воспользуемся следующими командами:

sudo /etc/init.d/rplay start sudo /etc/init.d/rplay stop

Как я уже писал выше, для работы нам потребуется ввести лицензионный ключ, для этого зайдем в настройки Rplay. В браузере на компьютере вводим адрес http://ip-address-of-pi:7100/admin или на самой малинке http://localhost:7100/admin Имя пользователя и пароль: admin/admin. В самом низу страницы вводим ключ, который вам должен прийти по электронной почте и нажимает Submit.

Так же в админке вы найдете немного настроек, таких как установка пароля, полный экран, запись видео и т. д.

Я устанавливал Rplay на Raspberry Pi B+ с Raspbian от 2015-01-31 и подключенным 24 дюймовым монитором с разрешением 1920х1200 по HDMI. Проверял с iPhone 5 на iOS 8.1.3, с iPad Retina на iOS 8.1.

3, с MacBook Pro Retina на Mac OS X 10.10.2. Все работает без замечаний, с айпада даже комфортно играть. Единственное я не проверил передачу звука по HDMI, т. к. в мониторе нет встроенных колонок.

Кто попробует с телевизором, отпишись заработает или нет у вас.

За 10 минут, вы из бесполезной на первый взгляд железки можете сделать очень полезное устройство, которым будете пользоваться каждый день. Экспериментируйте.

Источник: https://kropochev.com/?go=all/airplay-and-raspberry-pi/

Новое в iOS 11: AirPlay 2, особенности, поддерживаемые устройства

Все, что нужно знать про AirPlay 2.

Одним из главных нововведений iOS 11 стала AirPlay 2 — новая версия технологии, позволяющая передавать аудио и видео с iPhone, iPad и iPod touch на различные внешние устройства.

Основными особенностями AirPlay 2 стали три новые функций, которые кардинально меняют способ использования технологии.

Подробнее о них, а также о том, какие устройства поддерживают AirPlay 2 рассказали в этом материале.

Возможности AirPlay 2

Итак, что же такого может AirPlay 2, чего обычная технология AirPlay не может? В первую очередь, AirPlay 2 добавляет возможность управления внешними колонками из приложения «Дом».

Это означает, что пользователи могут прямо из приложения выбирать через какие динамики будет воспроизводится звук, а также регулировать громкость для каждой конкретной колонки, вне зависимости от ее расположения.

Кроме этого, при помощи AirPlay 2 у пользователей появляется возможность синхронной трансляции музыки с iPhone, iPad или iPod touch сразу на несколько колонок. В случае с таким использованием функции, для каждой колонки так же предусмотрен собственный регулятор громкости.

Заключительная особенность AirPlay 2 заключается в измененной системе добавления музыки в плейлисты. AirPlay 2 позволяет добавлять треки для дальнейшего воспроизведения разным пользователям, а не только владельцу устройства, с которого выполняется трансляция.

Какие устройства поддерживают AirPlay 2

AirPlay 2 доступна пользователям всех мобильных устройств Apple с поддержкой iOS 11, а именно:

iPhone

  • iPhone 7 Plus
  • iPhone 7
  • iPhone 6s
  • iPhone 6s Plus
  • iPhone 6
  • iPhone 6 Plus
  • iPhone SE
  • iPhone 5s

iPad

  • iPad Pro 10,5
  • iPad Pro 12,9 (первого поколения)
  • iPad Pro 12,9 (второго поколения)
  • iPad Pro 9,7
  • iPad (пятого поколения)
  • iPad Air 2
  • iPad Air
  • iPad mini 4
  • iPad mini 3
  • iPad mini 2

iPod touch

  • iPod touch шестого поколения

Что касается других устройств Apple, то поддержка AirPlay 2 реализована на Apple TV 4 под управлением tvOS 11 и всех компьютерах Mac с поддержкой macOS High Sierra.

Совместимые с AirPlay 2 колонки

К сожалению, не каждая колонка с поддержкой AirPlay будет способна работать с AirPlay 2. Производителям колонок необходимо обновить их поддержкой новой технологии.

Некоторые производители, например, Libratone и Naim объявили, что поддержка AirPlay 2 на их устройствах станет доступна после выхода небольшого программного обновления.

Однако есть и такие компании, которые заявили о невозможности выполнения подобного обновления, в результате чего только их старые колонки не будут иметь поддержку AirPlay 2.

Список производителей колонок, уже заявивших о реализации поддержки AirPlay 2, следующий:

  • Bang & Olufsen
  • Naim
  • BOSE
  • DEVIALET
  • DYNAUDIO
  • Beats
  • Polk
  • DENON
  • McIntosh
  • Marantz
  • Bowers & Wilkins
  • Libratone
  • Bluesound
  • Definitive Technology

Помимо этого, если у вас есть Apple TV четвертого поколения с установленной tvOS 11, любая подключенная к приставке колонка автоматически получит поддержку AirPlay 2.

Рекомендуем владельцам Айфонов:

  • iphone 8 дата выхода
  • wwdc
  • айфон 6 s где купить

Конкурс! Разыгрываем беспроводные наушники Apple AirPods за репост!

Источник: https://www.Apple-iPhone.ru/ios-11/novoe-v-ios-11-airplay-2-osobennosti-podderzhiva/

Cамодельная беспроводная колонка с airplay – Инструкции

Это мой последний проект — самодельная беспроводная колонка с airplay, которая работает через wi-fi.

Проект основан на отладочной плате с открытым исходным кодом LinkIt Smart 7688. Она имеет на своем борту встроенный Wi-fi и аудио, что и требуется для моего проекта.

Я сделал корпус для беспроводной колонки из дерева, что придает ей очень эстетичный вид и неплохой звук.

В проекте используются простые компоненты так что, если у вас мало знаний в электронике, вы всё равно сможете повторить этот проект.

Шаг 1. Смотрим видео. Беспроводная колонка на видео

Вот вам простое видео, которое позволит создать впечатление о проекте.

Шаг 2. Готовим компоненты

LinkIt Smart 7688LCD дисплейRGB светодиодная лента
динамикплата усилителя звука

Вот небольшой список того, что нам понадобится:

Электронные компоненты:

  • Smart LinkIt 7688 Duo
  • Макетная плата для LinkIt 7688
  • LCD дисплей с RGB подсветкой
  • 5′ дюймовый динамик (автомобильный)
  • Плата усилителя звуковых частот
  • WS2812B светодиодная лента
  • Разъем под постоянное напряжение
  • 12V блок питания

Читайте также:  Простейшая сигнализация на attiny13

Деревянные части и акрил

  • 5mm лист фанеры
  • 3mm кусочек акрила

Другое

  • Гайки М3
  • Медные стойки М3

Инструменты

  • Лазерный станок с ЧПУ (я воспользовался услугами рекламной фирмы)
  • Клеевой пистолет и термоклей к нему
  • Отвертка

Шаг 3. Изготовление панелей для корпуса

резка корпуса фронтрезка корпуса тылрезка корпуса бок
резка корпуса низрезка корпуса праваярезка корпуса верх

Как я уже писал выше, вам совершенно не обязательно иметь дома лазерный станок с числовым программным управлением! Любая фирма, занимающаяся изготовлением рекламы, с радостью выполнито ваш заказ за небольшие деньги.

Файл с векторным рисунком прилагаю по ссылке Файл для печати.

Шаг 4. Склеиваем корпус динамика

клеим корпуспроклеиваем термоклеемстыки проходим термоклеем

Для начала все стыки проклеиваем клеем по дереву (белый такой). Затем для герметизации изнутри все углы проклеиваем термоклеем. Ничего сложного тут нет.

Шаг 5. Добавляем электронику в беспроводную колонку

закрепляем регуляторзакрепленные регуляторызакрепляем дисплейприклеиваем дисплей
приклеенный дисплейзакрепляем динамикприкручиваем рамку динамикаобщий вид компонентов с фронта
примеряем акриловую табличкукрепим монтажные стойкипримеряемLinkIt Smart 7688 с монтажными стойками
монтажные стойки на усилителькрепим усилительразмещенные компоненты внутрисветодиодная лента с контроллером

Для этого шага вам понадобятся:

  • Клеевой пистолет
  • 20 штук гаек М3
  • 10 штук медных стоек М3
  • Отвертка

На подробных фото выше можно понять как размещаются и крепятся компоненты внутри беспроводной колонки.

Шаг 6. Добавим немного питания

Для того, чтобы запитать нашу беспроводную колонку, нам нужно два вида напряжения — 12 вольт для питания усилителя и 5 вольт для питания электроники. Я приобрел один блок питания на 12 вольт. Остается получить 5 вольт, для этого мы используем DC-DC преобразователь.

Шаг 7. Программируем

выбор вывода звука на iPhoneиграющая песняактивированный звук через airplay

Немного кода я собрал вот в этом файле. Код

Step 8: Играйте музыку!

Источник: https://instructables.info/camodelnaya-besprovodnaya-kolonka-s-airplay/

Какие колонки будут поддерживать технологию AirPlay 2?

Apple перечислила все сторонние колонки и Hi-Fi ресиверы, в которых появится поддержка технологии AirPlay 2, ставшая доступной сегодня с обновлениями iOS и tvOS.

После нескольких бета-версий Apple наконец-то выпустила iOS 11.4 и tvOS 11.4 публично, и новые версии содержат поддержку технологии AirPlay 2, выход которой долго откладывался.

С AirPlay 2 можно с помощью Siri управлять воспроизведением музыки на поддерживаемых колонках..

Сегодня сайт Apple HomeKit был обновлён секцией со всеми доступными аксессуарами и смарт-устройствами для дома с поддержкой HomeKit. Также был добавлен список колонок и ресиверов, в которых будет поддержка AirPlay 2.

Поддержку AirPlay 2 получат следующие устройства:

  • Apple HomePod
  • Beoplay A6
  • Beoplay A9 mk2
  • Beoplay M3
  • BeoSound 1
  • BeoSound 2
  • BeoSound 35
  • BeoSound Core
  • BeoSound Essence mk2
  • BeoVision Eclipse (только аудио)
  • Denon AVR-X3500H
  • Denon AVR-X4500H
  • Denon AVR-X6500H
  • Libratone Zipp
  • Libratone Zipp Mini
  • Marantz AV7705
  • Marantz NA6006
  • Marantz NR1509
  • Marantz NR1609
  • Marantz SR5013
  • Marantz SR6013
  • Marantz SR7013
  • Naim Mu-so
  • Naim Mu-so QB
  • Naim ND 555
  • Naim ND5 XS 2
  • Naim NDX 2
  • Naim Uniti Nova
  • Naim Uniti Atom
  • Naim Uniti Star
  • Sonos One
  • Sonos Play:5
  • Sonos Playbase

В будущем поддержку AirPlay 2 добавит больше компаний.

Выдержка из сегодняшнего пресс-релиза Apple:

На прошлогодней конференции WWDC Apple назвала несколько компаний, в чьих колонках будет поддержка AirPlay 2. Среди них были компании Bang & Olufsen, Denon, Marantz и Naim, а теперь список стал намного длиннее.

Компания Sonos проведёт свою презентацию на следующей неделе, и, скорее всего, мы узнаем, когда поддержка AirPlay 2 появится в колонках One, Play:5 и Playbase.

Rival Bose проводит мероприятиеи20 июня, на котором должна презентовать новые колонки.

HomePod поддерживает AirPlay 2 после установки последнего доступного обновления системы.

Чтобы наслаждаться новой технологией, даже необязательно иметь беспроводную колонку, ведь вы можете использовать для подключения свой Apple TV 4 поколения или Apple TV 4K с версией tvOS 11.4. Таким образом любая колонка может использоваться AirPlay.

В колонке Beats, которая должна выйти в этом году, тоже будет поддержка AirPlay 2.

Источник: https://IT-here.ru/novosti/kakie-kolonki-budut-podderzhivat-tehnologiyu-airplay-2/

Вышла iOS 11.4 с поддержкой стереопар и многокомнатных аудиосистем на основе AirPlay 2

Apple выпустила обновление iOS 11.4, в котором добавила возможность создавать стереопары HomePod и многокомнатные аудиосистемы на основе AirPlay 2.

Можно проигрывать музыку в одном помещении, находясь в другом, или включать везде одну и ту же песню, используя устройство iOS, HomePod, Apple TV или просто попросив Siri.

Также компания сообщила, что умная колонка HomePod поступит в продажу в Канаде, Франции и Германии в июне 2018 года.

Создание стереопары позволяет «расширить звуковую сцену и заполнить комнату более объёмным звуком, чем можно ожидать от традиционной пары колонок высотой около 15 сантиметров».

Каждый динамик определяет, в какой части комнаты расположен, и самостоятельно настраивается для оптимального звучания.

Благодаря технологии беспроводного однорангового прямого соединения обе колонки воспроизводят музыку полностью синхронно.

Каждая HomePod оснащена чипом A8, поэтому может воспроизводить собственный аудиоканал, при этом разделяя энергию фонового и прямого звука. Это позволяет создать почти трёхмерную звуковую сцену и существенно улучшить качество звучания.

Чтобы настроить стереопару, достаточно для обоих динамиков выбрать одну и ту же комнату. Колонки свяжутся друг с другом, и Siri будет реагировать лишь на одну из них.

В iOS 11.4 появилась и поддержка AirPlay 2 — технологии, которая «позволяет создать передовую беспроводную многокомнатную аудиосистему для удобной передачи музыки или подкастов из любой точки дома на разные устройства, работающие абсолютно синхронно». HomePod поддерживает систему автоматически, так что владельцам умных колонок Apple не придётся группировать их вручную.

Подписчики Apple Music могут попросить Siri включить в разных помещениях разные песни или, наоборот, одну и ту же композицию. HomePod сможет связываться с другими колонками с поддержкой AirPlay 2. Такие устройства выпустят Bang & Olufsen, Bluesound, Bose, Bowers & Wilkins, Denon, Libratone, Marantz, Marshall, Naim, Pioneer и Sonos.

Помимо прочего, Siri теперь может добавлять и проверять в календаре встречи — нужно только включить на HomePod функцию личных запросов.

Для использования HomePod требуется iPhone 5s или новее, iPad Pro, iPad Air или новее, iPad mini 2 или новее либо iPod touch 6-го поколения с iOS 11.2.5 или новее. Стереопары и многокомнатные аудиосистемы доступны при использовании iOS 11.4.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Источник: https://3dnews.ru/970431

AirPlay: Все что необходимо знать. Часть 2

Как вывести звук на акустику с AirPlay.

Итак, теперь вы знаете что такое AirPlay, каковые его преимущества и что с его помощью можно делать. Теперь пришло время поговорить о том, как настроить его на разных устройствах.

Акустика с поддержкой AirPlay

Большая часть такой акустики настраивается очень просто. Зачастую вам необходимо подключить iOS устройство к таким колонкам через USB, запустить приложение и настроить в нем акустику для работы в вашей локальной сети (Wi-Fi или Ethernet). Но есть также модели, которые сами создают свою Wi-Fi сеть.

Вы подключаетесь к этой сети с помощиью iOS-устройства или компьютера и, запустив браузер, настаиваете колонки для своей сети.

В любом случае, вся такая акустика поставляется с инструкцией по настройке, так что сложностей возникнуть не должно. Вам также стоит придумать для AirPlay-колонок название.

Скажем, «Кухонные колонки», чтобы не путаться когда (и если) у вас будет несколько акустических AirPlay-станций.

AirPort Express

Настройка AirPlay для AirPort Express тоже сложностей не вызывает. Если у вас уже есть настроенный AirPort Express, то нужно запустить Утилиту AirPort, выбрать вкладку AirPlay, поставить соответствующую галочку и нажать Обновить.

Если же вы планируете использовать AirPort Express для создания новой беспроводной сети или расширения существующей, нужно сперва запустить Мастер настройки Express, а затем повторить вышеописанные действия.

Вы также можете установить пароль на доступ к сети AirPlay. Это особенно актуально если сеть выходит за пределы вашего дома, доходя до улицы или соседей.

После завершения настройки AirPlay на AirPort Express вы сможете подключить к нему любую акустику с помощью аналогового или цифрового аудио-кабеля.

Передача аудио по AirPlay

После того как вы настроили AirPlay-соединение, пришло время испытать его в действии. Вот как это делается.

iOS: Приложение с поддержкой AirPlay

Начиная с iOS 4.3 и выше, приложения получили встроенную поддержку AirPlay. Настройки доступа к нему скрываются за характерным значком…

…который как правило находится возле ползунка регулировки громкости. Нажмите на него и вы увидите все устройства находящиеся в AirPlay-сети. Тапните по нужному и спустя несколько секунд оно начнет воспроизведение. Но здесь нужно учитывать, что iOS может посылать аудио-сигнал лишь на один приемник. Т. е. заставить одну песню звучать из всех колонок в доме не получится.

Читайте також на iLand.ua

iOS: Встроенная поддержка AirPlay

AirPlay интегрирована в iOS на системном уровне. Получить к нему доступ можно открыв меню многозадачности (двойное нажатие на кнопку Домой) и пролистав вправо до ползунка регулировки громкости. Здесь же находится значок AirPlay. Нажмите на него для выбора приемника сигнала.

Mac: Стриминг звука с iTunes

Здесь все просто до предела. Значок AirPlay находится рядом с ползунком регулировки громкости. Кликните по нему и выберите желаемый приемник сигнала. Здесь же находится раздел для выбора нескольких устройств. Нажмите на него, чтобы направить звук сразу на несколько приемников или на все сразу. Регулировать уровень громкости для каждого из них можно прямо из этого меню.

Mac: Стриминг всего звука

Если вы хотите стримить вообще весь звук с Mac, а не только аудио с iTunes, то для этого нужно зайти в Системные настройки -> Звук и выбрать приемник AirPlay. Это также можно сделать, щелкнув по значку регулировки громкости в Панели меню с зажатой клавишей Option.

Mac: Другие приложения и сервисы

Допустим, вы желаете вывести звук на колонки по AirPlay не из iTunes, а например, из браузера, во время прослушивания музыки на Last.fm или другом сервисе, но не хотите стримить на колонки весь звук с Mac целиком.

Здесь вам придется воспользоваться сторонними приложениями. Например, для Mac ($25) открывает доступ к настройкам звука всех запущенных приложений, позволяя транслировать его на AirPlay-устройства.

Июль 22, 2013 | Александр Серый |

Источник: http://iland.ua/articles/airplay-vse-chto-neobhodimo-znat.-chast-2

Источник

Спасибо за чтение статей на сайте

Светодиодная лампа своими руками — 10вт

Светодиодная лампа своими руками – 10вт

Светодиодные лампы своими руками: особенности конструкций, способы самостоятельного создания светодиодного светильника

Изготовление светодиодной лампы на 220 В своими руками занятие интересное, требующее терпения. Дополнительно нужны небольшие знания физики, и умение паять. Главная задача состоит в создании схемы преобразователя переменного тока сети на постоянный в 12 В, на котором работает светодиодный светильник.

Светодиодная лампа

Представляет маленький светящийся диодный элемент, работающий от постоянного тока в основном в 12В. Для создания ламп их собирают по несколько, в зависимости от требуемой интенсивности света. Преимущества такого освещения:

  • мизерное потребление электроэнергии;
  • срок службы от 100 000 часов;
  • могут работать сутками, без отключения;
  • в продаже имеется большой выбор различных моделей.

Основной недостаток в высокой стоимости готовых светодиодных светильников. Продавцы плохо разбираются в вопросе и не могут квалифицированно ответить на ваши вопросы. В самой характеристике лампы не учитываются потери при прохождении света через рассеиватель, матовое стекло и свойства отражателя.

На упаковке светильника указаны расчетные данные, исходящие из характеристик и количества светодиодных элементов. Поэтому по факту световой поток купленной лампы значительно ниже требуемого и освещение слабое. Сами лампы и детали для создания схем стоят копейки. Поэтому проще всего умельцам сделать все своими руками.

Использование светодиодных светильников

В домах и квартирах часто необходимо постоянное освещение какого-то места. Это могут быть лестницы и детские комнаты, туалеты, где нет окон, а в доме живет ребенок, который не может дотянуться до выключателя.

Неяркий свет и малое потребление энергии позволяют ставить освещение в подъездах и на крыльце, перед калиткой и воротами гаража. Светильники с мягким свечением за счет гашения бликов, применяются для освещения рабочих столов в кабинетах и на кухне.

Создание светодиодного светильника своими руками

Многих мучает вопрос, как сделать светодиодную лампу своими руками и возможно ли это. Схем для создания светодиодного освещения, работающего от сети переменного тока в 220 В, много, все они решают ряд общих задач:

  • перевести переменный ток в пульсирующий;
  • выровнять его до постоянного;
  • сделать силу тока равной 12В.

При создании светодиодного освещения своими руками приходится решать еще и задачи:

  • куда поместить схемы и светодиоды;
  • как изолировать осветительную конструкцию;
  • правильный теплообмен.

Схемы светодиодных ламп

Выравнивание переменного пота и создание необходимой мощности и сопротивления для светодиодных светильников решается двумя способами. Схемы условно можно разделить на:

  • с диодным мостом;
  • резисторные, с четным количеством светодиодных элементов.

Каждый вариант имеет простые схемы и свои преимущества.

Схема преобразователя с диодным мостом

Диодный мост состоит из 4 диодов, направленных в разные стороны. Его задача превратить синусоидальный переменный ток в пульсирующий. Каждая полуволна проходит через два элемента, и минус меняет свою полярность.

В схеме, для светодиодной лампы, перед мостом со стороны источника переменного тока на плюс подсоединяется конденсатор С10,47х250 v. Перед минусовой клеммой ставится сопротивление на 100 Ом.

Позади моста, параллельно ему, устанавливается еще один конденсатор – С25х400 v, который сглаживает перепад напряжений.

Сделать своими руками такую схему легко, достаточно иметь навыки работы с паяльником.

Светодиодный элемент

Плата со светодиодными элементами применяется стандартная, от вышедшего из строя светильника. Необходимо проверить перед сборкой, чтобы все детали были рабочими.

Для этого используется аккумулятор на 12 V, можно от автомобиля. Нерабочие элементы можно заменить, распаяв аккуратно контакты и поставив новые.

Внимательно следите за расположением ножек анода и катода. Они соединяются последовательно.

При замене 2 – 3 деталей, вы просто припаиваете их в соответствии с положением, которое занимали вышедшие из строя элементы.

Собирая новый светодиодный светильник своими руками, нужно помнить простое правило. Лампы соединяются по 10 последовательно, затем эти цепи подключаются параллельно. На практике это выглядит так:

  1. 10 светодиодов ставите в ряд и спаиваете ножки анод одной с катодом второй. Получается 9 соединений и по одному свободному хвостику по краям.
  2. Все цепочки припаиваете к проводам. К одному катодные концы, к другому анодные.

В текстах часто используется словесное обозначение контактов, на схемах значки. Напоминание для начинающих электриков:

  • катод, положительный — «+», присоединяется к минусу;
  • Анод отрицательный – «-», присоединяется к плюсу.

При сборке схем своими руками, следите, чтобы спаянные концы не касались других. Это приведет к замыканию и сгорит вся схема, которую вы сумели сделать.

Схемы для более мягкого свечения

Чтобы светодиодная лампа не раздражала глаза миганием, в схему сборки надо добавить несколько деталей. В целом преобразователь тока состоит из:

  • диодный мост;
  • конденсаторы на 400 нФ и 10 мкФ;
  • резисторы на 100 и 230 Ом.

Для защиты от скачков напряжения, вначале ставится резистор на 100 Ом, и за ним впаивается конденсатор в 400 нФ. В предыдущем варианте они установлены на разных концах входа. За конденсатором после диодного моста устанавливается еще один резистор 230 Ом. За ним идет последовательная цепочка светодиодов (+).

Схемы на резисторах

Самая простая схема для желающих сделать все своими руками состоит из двух резисторов 12 k и двух цепочек с одинаковым количеством светодиодных элементов припаиваются соединенные последовательно лампы с разной направленностью. Со стороны R 1 одна полоса припаивается катодом, вторая – анодом. Другой отводок к R 2 наоборот.

Это создает более мягкое свечение ламп, поскольку светодиодные элементы горят поочередно и пульсация вспышек для глаз практически незаметна. Такие светильники можно использовать даже в качестве местного освещения при работе за столом, заменив, таким образом, обычную настольную лампу.

Специалисты, которые сделали своими руками не одну лампу, рекомендуют собирать не менее 20 светодиодов для этой схемы. Чаще используют 40. Это обеспечивает хорошее освещение и схема собирается легко. Для большего количества сложно производить качественную пайку схемы, не задев соседних контактов. Да и собирать ее в корпус трудно.

Можно делать светильник из 4 или 6 более мощных светодиодов. Для расчета схем использовать специальный калькулятор, который можно найти в интернете.

При создании различных схем своими руками из светодиодных приборов и других, можно использовать для правильного расчета онлайн-калькулятор. Его легко найти на сайтах, которые посвящены электрическим приборам и описанию, как их сделать. Его использование значительно упростит процесс расчета силы тока, сопротивления и позволит проверить правильность подбора деталей.

Корпуса для светодиодных ламп

Для удобного включения светодиодной лампы, которую сделали своими руками, в обычные осветительные приборы, используют:

  • цоколи обычных ламп накаливания;
  • корпуса от энергосберегающих ламп;
  • галогенные лампы;
  • самодельные приспособления.

Каждый специалист, делая светодиодную лампу своими руками, выбирает наиболее подходящий вариант. Цоколь дает возможность закрутить лампу в обычный патрон и одновременно обеспечивает теплообмен. Перегреваясь, светодиодная лампа быстрее выходит из строя.

Цоколь с лампы накаливания

Аккуратно отделяем стеклянную колбу и извлекаем спираль. Затем внутрь цоколя помещается схема и сверху на плате крепятся лампы. Недостаток такого основания в неприглядном виде и плохой изоляции.

Корпус энергосберегающей лампы

Самый удобный и практичный вариант для создания светодиодной лампы своими руками. Способы крепления диодов могут быть разные. Вначале аккуратно разбирается сгоревшая лампа. Затем из нее извлекается плата преобразователя. Далее, имеются варианты.

Можно разместить в отверстиях крышки, которые сделаны под стеклянные колбы. Это в варианте лампы с тремя дугообразными световыми элементами. Схема располагается внутри цоколя, обеспечивающего теплообмен. Светодиоды вставляются в уже готовые отверстия и крепятся в них.

Готовую плату со светодиодами можно поместить в цоколь с помощью простой пластиковой крышки от бутыли с водой. Можно использовать сделанный самостоятельно кружок и просверлить в нем отверстия под диоды. В результате удобно использовать и эстетичный вид.

Некоторые умельцы, делая своими руками, используют корпус галогенной лампы. Неудобство такого варианта в отсутствии обычной для цоколя возможности закрутить лампу в патрон. Такой вариант больше подходит для создания своими руками индикаторов и светильников постоянного тока.

Источник: https://elektro.guru/osveschenie/varianty-sozdaniya-svetodiodnyh-lamp-na-220v-svoimi-rukami.html

Как сделать светодиодную лампу на 220в своими руками: инструкция, схемы, видео

Светодиодные источники света экономичны и обладают рядом важных преимуществ по сравнению с другими. Самостоятельное изготовление такого прибора позволяет усовершенствовать собственные навыки и создать практичный осветительный прибор.

Что такое светодиодные лампы и их преимущества

Востребованным и практичным вариантом освещения являются светодиодные приборы. Они представляют собой полупроводниковые устройства, которые внешне похожи на обычные лампы накаливания.

Внутри корпуса находится полупроводниковый материал, в котором осуществляется движение электронов. В результате появляется поток света высокой интенсивности.

При этом в лампе присутствует светодиод, который является генератором освещения.

Светодиодная лампа имеет простую конструкцию

Преимущества светодиодов

Светодиодная лампа на 220 В имеет ряд преимуществ по сравнению с другими вариантами осветительных приборов. Это делает устройство востребованным для освещения любых помещений.

Преимущества светодиодных ламп заключаются в следующем:

  • при изготовлении своими руками лампы имеют низкую стоимость;
  • экономичность потребления электроэнергии;
  • интенсивное освещение;
  • отсутствие нагрева воздуха;
  • экологичность и безопасность;
  • длительный срок службы.

Недостатком этого вида приборов освещения является высокая стоимость. При этом изделия экономичны и их легко изготовить своими руками. Поэтому многие пользователи прибегают именно к такому решению, для осуществления которого не требуется сложный инструмент и профессиональные навыки.

Изготовление лампы своими руками

Сложно представить, но даже светодиодную лампу можно сделать своими руками и существенно сэкономить на покупке приборов.

Инструменты и материалы

Качество материалов и инструментов, необходимых для создания лампы на 220 В, играет важную роль. От этого зависят надёжность и безопасность, долговечность изделия.

Своими руками легко сделать лампы направленного света

Для работы нужны такие элементы, как:

  • галогенная лампа без стекла;
  • светодиоды в количестве до 22 штук;
  • быстродействующий клей;
  • медный провод и листовой алюминий, толщина которого составляет 0,2 мм;
  • резисторы, подбирающиеся в зависимости от схемы.

Перед работой необходимо составить схему соединения всех деталей, которая зависит от конкретной ситуации. Для этой цели используют разнообразные онлайн-калькуляторы, позволяющие получить точный результат. При количестве светодиодов более 22 соединение отличается сложностью и требуется особенный подход.

Схема подбирается в зависимости от ситуации

В качестве инструментов используются отвёртка, молоток, дырокол, маленький паяльник. В процессе работы также потребуется небольшая подставка, позволяющая с удобством разместить диоды на отражающем диске.

Читайте также:  Автомобильный контроллер подсветки приборной панели

Пошаговая инструкция изготовления лампы

Изготовление светодиодной лампы на 220 В своими руками не требует профессиональных знаний и сложных инструментов.

  1. Предварительно нужно подготовить неисправную лампу, открыв корпус. Цоколь отсоединяется от него очень аккуратно, а для этого можно использовать отвёртку.Корпус нужно открыть и отсоединить цоколь
  2. Внутри конструкции присутствует плата пускорегулирующего электронного аппарата, которая понадобится для дальнейшей работы. А также необходимы светодиоды. Верхняя часть изделия имеет крышку с отверстиями. Из неё следует изъять трубки. Из пластика или плотного картона изготавливается основание.На картонную основу светодиоды нужно закрепить с помощью клея
  3. На пластиковой основе светодиоды будут держаться более надёжно, чем на картоне. Поэтому лучше всего использовать кусок пластика.
  4. Питание лампы будет осуществляться с помощью драйвера RLD2–1, который подходит для сети с напряжением в 220 В. При этом можно подключить последовательно 3 белых одноваттных светодиода. Три элемента соединяются параллельно, а затем все цепочки фиксируются последовательно.Драйвер можно изготовить своими руками
  5. Провода в цоколе могут повредиться во время разборки конструкции лампы. В этом случае нужно припаять элементы на место, что обеспечит простую технику дальнейшей сборки изделия.Оторванные провода нужно закрепить на место
  6. Кусок пластика нужно разместить также между драйвером и платой. Это позволяет избежать замыкания. При этом можно использовать и картон, ведь светодиодная лампа не греется. После этого конструкция собирается, а прибор вкручивается в патрон и проверяется на работоспособность.

После сборки нужно проверить работоспособность устройства

Мощность такой лампы составляет примерно 3 Ватта. Прибор подключается в сети с напряжением в 220 В и обеспечивает яркое освещение. Лампа эффективна в качестве вспомогательного источника света. На основе этого примера изготовления своими руками легко создать более мощные конструкции.

Делаем драйвер

Устройство стабилизации тока и источник постоянного напряжения — драйвер — присутствует в конструкции лампы, подключаемой к сети с напряжением в 220 В. Без него невозможно создание источника света, а изготовить такой элемент можно своими руками.

Для этого следует аккуратно разобрать лампу, отрезать провода, ведущие к цоколю и к стеклянным колбам. При этом стоит учесть, что один из окольных проводов может иметь резистор.

В таком случае отрезать элемент следует за резистором, так как он нужен при создании драйвера.

После отсечения проводов остается такая деталь

Каждый вариант платы отличается в зависимости от производителя, мощности устройства и других особенностей. Для светодиодов мощностью 10 Вт нет необходимости переделывать драйвер.

Если же лампа отличается интенсивностью потока света, то лучше всего взять преобразователь от прибора большей мощности. На дроссель лампы в 20 Вт следует намотать 18 витков эмальпровода, а затем подпаять его вывод к диодному мосту. Далее на лампу подаётся напряжение и проверяется мощность на выходе.

Так можно создать изделие, характеристики которого соответствуют требованиям.

Видео: изготовление светодиодной лампы своими руками

Сделать светодиодную лампу на 220 В своими руками легко, но предварительно нужно определить необходимую мощность, схему и подобрать все элементы. Далее процесс не вызывает трудностей даже у начинающих мастеров. В результате получится экономичное и надёжное устройство для освещения любых помещений.

Источник: https://tehznatok.com/kak-podklyuchit/svetodiodnaya-lampa-svoimi-rukami-na-220v.html

Мастерская LED освещения в Днепропетровске

Оценка статьи: 1 звезда2 звезды3 звезды4 звезды5 звезд (нет голосов)
Загрузка… Поделиться с друзьями: Светодиодная лампа своими руками – 10втСсылка на основную публикацию Похожие публикации

Добавить комментарий Нажмите, чтобы отменить ответ. Рубрики

  • Справочник электрика

Популярные статьи Регулятор скорости подачи проволоки сварочного полуавтомата Регулятор скорости подачи проволоки сварочного полуавтомата схемаГлавная » Статьи »… 0 10.10.2018 Антенна gsm своими руками Самодельный пассивный ретранслятор мобильного телефона и интернета Терпеть не могу ловить… 0 11.10.2018 Пробник электрика Обзор пробников электрикаВ повседневной работе электрикам, часто требуется проводить измерения… 0 10.10.2018

  • Карта сайта

© 2021 Все права защищены Adblock
detector «,css:{backgroundColor:»#000″,opacity:.6}},container:{block:void 0,tpl:»

«},wrap:void 0,body:void 0,errors:{tpl:»»,autoclose_delay:2e3,ajax_unsuccessful_load:»Error»},openEffect:{type:»fade»,speed:400},closeEffect:{type:»fade»,speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest(«HTML»,n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data(«arcticmodal»)?b:(b=n(a).closest(«.arcticmodal-container»).data(«arcticmodalParentEl»),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case»fade»:»show»==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case»none»:»show»==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(«.arcticmodal-close»,a.body).unbind(«click.arcticmodal»).bind(«click.arcticmodal»,function(){return b.arcticmodal(«close»),!1})},init_el:function(d,a){var b=d.data(«arcticmodal»);if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(«.arcticmodal-container_i2»,b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before(«»),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(«>*»,b.body),a)&&d.arcticmodal(«close»)}),b.container.block.data(«arcticmodalParentEl»,d),d.data(«arcticmodal»,b),p=n.merge(p,d),n.proxy(e.show,d)(),»html»==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html(«»):c(b,d)},success:function(c){d.trigger(«afterLoading»),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger(«afterLoadingOnShow»),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger(«errorLoading»),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(«.arcticmodal-error»,b.body).html(b.errors.ajax_unsuccessful_load),n(«.arcticmodal-close»,b.body).click(function(){return d.arcticmodal(«close»),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal(«close»)},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data(«arcticmodal»,b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error(«jquery.arcticmodal: Uncorrect parameters»);if(«»==b.type)return void n.error(«jquery.arcticmodal: Don’t set parameter «type»»);switch(b.type){case»html»:if(«»==b.content)return void n.error(«jquery.arcticmodal: Don’t set parameter «content»»);var e=b.content;return b.content=»»,q.init_el(n(e),b);case»ajax»:return»»==b.url?void n.error(«jquery.arcticmodal: Don’t set parameter «url»»):q.init_el(n(«»),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error(«jquery.arcticmodal: Uncorrect call»);var b=a.data(«arcticmodal»);if(b.overlay.block.hide(),b.container.block.hide(),n(«BODY»).append(b.overlay.block),n(«BODY»).append(b.container.block),b.beforeOpen(b,a),a.trigger(«beforeOpen»),»hidden»!=b.wrap.css(«overflow»)){b.wrap.data(«arcticmodalOverflow»,b.wrap.css(«overflow»));var c=b.wrap.outerWidth(!0);b.wrap.css(«overflow»,»hidden»);var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css(«marginRight»,d-c+»px»)}return p.not(a).each(function(){var a=n(this).data(«arcticmodal»);a.overlay.block.hide()}),q.transition(b.overlay.block,»show»,1*»)),b.overlay.block.remove(),b.container.block.remove(),a.data(«arcticmodal»,null),n(«.arcticmodal-container»).length||(b.wrap.data(«arcticmodalOverflow»)&&b.wrap.css(«overflow»,b.wrap.data(«arcticmodalOverflow»)),b.wrap.css(«marginRight»,0))}),»ajax»==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?»html»:»body»)}),n(document).bind(«keyup.arcticmodal»,function(d){var a=p.last();if(a.length){var b=a.data(«arcticmodal»);b.closeOnEsc&&27===d.keyCode&&a.arcticmodal(«close»)}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):»object»!=typeof a&&a?void n.error(«jquery.arcticmodal: Method «+a+» does not exist»):q.init.apply(this,arguments)}}(jQuery)}var debugMode=»undefined»!=typeof debugFlatPM&&debugFlatPM,duplicateMode=»undefined»!=typeof duplicateFlatPM&&duplicateFlatPM,countMode=»undefined»!=typeof countFlatPM&&countFlatPM;document[«wri»+»te»]=function(a){let b=document.createElement(«div»);jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,»»),c=»»;for(let a=0;a=b.top-h?b.top-h{const d=c.split(«=»);return d[0]===a?decodeURIComponent(d[1]):b},»»),c=»»==b?void 0:b;return c}function flatPM_testCookie(){let a=»test_56445″;try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a} «);let k=document.querySelector(«.flat_pm_modal[data-id-modal=»»+a.ID+»»]»);if(-1===d.indexOf(«go»+»oglesyndication»)?flatPM_setHTML(k,d):jQuery(k).html(b+d),»px»==a.how.popup.px_s)e.bind(h,()=>{e.scrollTop()>a.how.popup.after&&(e.unbind(h),f.unbind(i),j())}),void 0!==a.how.popup.close_window&&»true»==a.how.popup.close_window&&f.bind(i,()=>{e.unbind(h),f.unbind(i),j()});else{let b=setTimeout(()=>{f.unbind(i),j()},1e3*a.how.popup.after);void 0!==a.how.popup.close_window&&»true»==a.how.popup.close_window&&f.bind(i,()=>{clearTimeout(b),f.unbind(i),j()})}f.on(«click»,».flat_pm_modal .flat_pm_crs»,()=>{jQuery.arcticmodal(«close»)})}if(void 0!==a.how.outgoing){let b,c=»0″==a.how.outgoing.indent?»»:» style=»bottom:»+a.how.outgoing.indent+»px»»,e=»true»==a.how.outgoing.cross?»»:»»,f=jQuery(window),g=»scroll.out»+a.ID,h=void 0===flatPM_getCookie(«flat_out_»+a.ID+»_mb»)||»false»!=flatPM_getCookie(«flat_out_»+a.ID+»_mb»),i=document.createElement(«div»),j=jQuery(«body»),k=()=>{void 0!==a.how.outgoing.cookie&&»false»==a.how.outgoing.cookie&&h&&(jQuery(«.flat_pm_out[data-id-out=»»+a.ID+»»]»).addClass(«show»),j.on(«click»,».flat_pm_out[data-id-out=»»+a.ID+»»] .flat_pm_crs»,function(){flatPM_setCookie(«flat_out_»+a.ID+»_mb»,!1)})),(void 0===a.how.outgoing.cookie||»false»!=a.how.outgoing.cookie)&&jQuery(«.flat_pm_out[data-id-out=»»+a.ID+»»]»).addClass(«show»)};switch(a.how.outgoing.whence){case»1″:b=»top»;break;case»2″:b=»bottom»;break;case»3″:b=»left»;break;case»4″:b=»right»;}jQuery(«body > *»).eq(0).before(«»+e+»»);let m=document.querySelector(«.flat_pm_out[data-id-out=»»+a.ID+»»]»);-1===d.indexOf(«go»+»oglesyndication»)?flatPM_setHTML(m,d):jQuery(m).html(e+d),»px»==a.how.outgoing.px_s?f.bind(g,()=>{f.scrollTop()>a.how.outgoing.after&&(f.unbind(g),k())}):setTimeout(()=>{k()},1e3*a.how.outgoing.after),j.on(«click»,».flat_pm_out .flat_pm_crs»,function(){jQuery(this).parent().removeClass(«show»).addClass(«closed»)})}countMode&&(flat_count[«block_»+a.ID]={},flat_count[«block_»+a.ID].count=1,flat_count[«block_»+a.ID].click=0,flat_count[«block_»+a.ID].id=a.ID)}catch(a){console.warn(a)}}function flatPM_start(){let a=flat_pm_arr.length;if(0==a)return flat_pm_arr=[],void jQuery(«.flat_pm_start, .flat_pm_end»).remove();flat_body=flat_body||jQuery(«body»),!flat_counter&&countMode&&(flat_counter=!0,flat_body.on(«click»,»[data-flat-id]»,function(){let a=jQuery(this),b=a.attr(«data-flat-id»);flat_count[«block_»+b].click++}),flat_body.on(«mouseenter»,»[data-flat-id] iframe»,function(){let a=jQuery(this),b=a.closest(«[data-flat-id]»).attr(«data-flat-id»);flat_iframe=b}).on(«mouseleave»,»[data-flat-id] iframe»,function(){flat_iframe=-1}),jQuery(window).on(«beforeunload»,()=>{jQuery.isEmptyObject(flat_count)||jQuery.ajax({async:!1,type:»POST»,url:ajaxUrlFlatPM,dataType:»json»,data:{action:»flat_pm_ajax»,data_me:{method:»flat_pm_block_counter»,arr:flat_count}}})}).on(«blur»,()=>{-1!=flat_iframe&&flat_count[«block_»+flat_iframe].click++})),flat_userVars.init();for(let b=0;bflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_subc&&cc&&c>d&&(b=flatPM_addDays(b,-1)),b>e||cd||c-1!=flat_userVars.referer.indexOf(a))||void 0!==a.referer.referer_disabled&&-1!=a.referer.referer_disabled.findIndex(a=>-1!=flat_userVars.referer.indexOf(a)))&&(c=!0),c||void 0===a.browser||(void 0===a.browser.browser_enabled||-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser))&&(void 0===a.browser.browser_disabled||-1==a.browser.browser_disabled.indexOf(flat_userVars.browser)))){if(c&&void 0!==a.browser&&void 0!==a.browser.browser_enabled&&-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser)&&(c=!1),!c&&(void 0!==a.geo||void 0!==a.role)&&(«»==flat_userVars.ccode||»»==flat_userVars.country||»»==flat_userVars.city||»»==flat_userVars.role)){flat_pm_then.push(a),flatPM_setWrap(a),flat_body.hasClass(«flat_pm_block_geo_role»)||(flat_body.addClass(«flat_pm_block_geo_role»),flatPM_ajax(«flat_pm_block_geo_role»)),c=!0}c||(flatPM_setWrap(a),flatPM_next(a))}}}let b=jQuery(«.flatPM_sticky»);b.each(function(){let a=jQuery(this),b=a.data(«height»)||350,c=a.data(«top»);a.wrap(«»);let d=a.parent()[0];flatPM_sticky(this,d,c)}),debugMode||countMode||jQuery(«[data-flat-id]:not([data-id-out]):not([data-id-modal])»).contents().unwrap(),flat_pm_arr=[],jQuery(«.flat_pm_start, .flat_pm_end»).remove()}

Как подключить 10 Вт светодиоды, и какое им найти применение?

Светодиодная матрица 10 W изготовлена по МСОВ технологии и состоит из 9 кристаллов соединенных по 3 последовательно и 3 цепочки параллельно.

Каждый кристалл рассчитан на напряжение 3,2-4,0 V, поэтому в сумме три последовательно соединенных кристалла  открываются при 9,6 V и нормально работают до 12 V, что позволяет достаточно просто использовать их в автомобилях и для аварийного освещения подключая их напрямую к аккумуляторной батарее через ограничивающее по току сопротивление мощностью 2W.
Номинал сопротивления рассчитывается по закону Ома. При таком подключении к аккумулятору за счет нагрева сопротивления потери могут составлять 15-25% от номинала матрицы, что не критично в автомобилях но значительно уменьшают время разрядки аккумулятора при аварийном освещении, поэтому для аварийного освещения часто используют DC-DC  преобразователи имеющие эффективность выше 92%.

Качество светодиодной матрицы определяется тремя основными составляющими кристалл, люминофор, подложка. Для кристалла помимо светоотдачи Lm/W большое значение имеют его геометрические размеры, чем больше кристалл тем больше площадь контакта с подложкой, что позволяет более эффективно отводить тепло, а это одна из основных задач.

Рабочая температура 60-65 град С но это не означает, что  радиатор может греться  до такой температуры т.к. температура радиатора и подложки матрицы значительно отличаются. Перегрев кристалла приводит к его деградации и уменьшению срока службы светодиодов в разы или десятки раз, и в последующем к выходу из строя матрицы. Минимально необходимая площадь радиатора 200-300 см. кв.

в зависимости от параметров и условий эксплуатации. У более ярких и качественных матриц подложка  медная, у менее ярких – алюминиевая.

Медь имеет большую теплопроводность поэтому она предпочтительнее, но и на алюминии светодиоды работают нормально при достаточном радиаторе, а если использовать матрицу не на полную номинальную мощность, а на 80% от номинала то даже на алюминии матрицы смогут проработать заявленные производителем 50000-100000 часов.

Из технических характеристик следует, что питается 10 Вт светодиодная сборка постоянным напряжением 12 вольт с током 900-1000 ма и может нагреваться до +60 ° C.

Для начала попробуем включить 10 Вт светодиод.

Для пробного включения используем источник постоянного напряжения 12 вольт, в данном случае аккумулятор, и стабилизатор тока. Также для пробного включения светодиода нам потребуется радиатор-охладитель площадью не менее 600 см2.

Самый простейший стабилизатор тока можно собрать на микросхеме LM317 и одном резисторе.

Схема стабилизатора тока на LM 317 (далее будем называть его драйвером)

По формуле внизу рисунка очень просто расчитать величину сопротивления резистора для необходимого тока. Т.е сопротивление резистора равно — 1,25 деленное на требуемый ток.  Для стабилизаторов до 0,1 A подходит мощность резистора 0,25 W. На токи от 350 мА до 1 А рекомендуется 2 W. Ниже  приведена таблица резисторов на токи для широко распространенных светодиодов.

Ток (уточненный ток для резистора стандартного ряда) Сопротивление резистора Примечание
20 мА 62 Ом стандартный светодиод
30 мА (29) 43 Ом «суперфлюкс» и ему подобные
40 мА (38) 33 Ом
80 мА (78) 16 Ом четырех-кристальные
350 мА (321) 3,9 Ом 1 W
750 мА (694) 1,8 Ом 3 W
1000 мА (962) 1,3 Ом 5 – 10 W

Для подключения 10 Вт светодиода потребуется резистор номиналом 1,3 Ом мощностью 2W.

Светодиод питается напряжением 10-12 вольт. На стабилизаторе LM 317 – падение напряжения 1,25 вольта при стабилизации 962 ма..

Складываем 12В диода + 1,25В стабилизатора = 13,25В напряжение источника питания. А на аккумуляторе 13,4~13,8 вольт, что вполне достаточно!

Собираем схему следующим образом:

Светодиод закрепляем на алюминиевом радиаторе саморезами. Обязятельно всю площадь контакта светодиода с радиатором смазываем тонким слоем термопроводящей пасты для улучшения теплоотдачи.

Так как между основанием данного светодиода и его контактными выводами нет гальванической связи, то на тот же радиатор с использованием термопроводящей пасты закрепляем и микросхему LM 317 в корпусе ТО 220 (она тоже греется, ведь на ней падает 1,25 вольта!). Спаиваем 3 детали по схеме

.

К белому проводу подключаем клемму “-” аккумулятора, а оранжевому “+”

И, о чудо! Светодиод 10 Вт светится на все 1080 lm,  что соответствует силе света лампы накаливания мощностью 100 W . Но в отличие от лампы накаливания мощностью 100 W, светодиод вместе с драйвером греется всего градусов до 45, и что самое главное, потребляет всего10 W.

Такую конструкцию смело можно применить в автомобильных фарах, например для ближнего света. Единственное, что потребуется изменить, так это изолировать теплоотвод LM 317 от кузова автомобиля, так как в микросхеме имеется  гальваническая связь с теплоотводом по “+”, а в автомобиле на кузове “-“.

Источник: http://dp-installer.at.ua/publ/led_light/led_lighting/super_bright_leds_10w/14-1-0-22

Светодиодная лампа своими руками: подробная инструкция

Светодиодная лампа на 220 вольт позволяет сэкономить в 1,5–2 раза больше электроэнергии, чем лампа дневного света, и в 10 раз больше, чем лампа накаливания.

К тому же при сборке из перегоревшего светильника расходы на изготовление такой лампы будут значительно ниже.

Светодиодная лампа своими руками собирается достаточно просто, хотя работать с высоким напряжением вы можете только при наличии у вас соответствующей квалификации.

Преимущества самодельной лампы

В магазине можно найти множество видов ламп. Каждый тип имеет свой недостаток и преимущество. Лампы накаливания постепенно сдают свои позиции из-за высокого потребления энергии, низкой светоотдачи, несмотря на высокий индекс цветопередачи.

По сравнению с ними люминесцентные источники света — настоящее чудо.

Энергосберегающие лампы — их более современная модернизация, позволившая применять преимущества люминесцентного света в самых распространенных светильниках, с цоколями Е27, лишенная неприятного мерцания старых представителей этого семейства.

Но и у ламп дневного света есть недостатки. Они быстро выходят из строя из-за частого включения-выключения, к тому же содержащиеся в трубках пары ядовиты, а сама конструкция требует специальной утилизации. По сравнению с ними лампа на светодиодах (LED) — вторая революция в области освещения. Они ещё более экономичны, не требуют особой утилизации и работают в 5–10 раза дольше.

У светодиодных ламп есть один, но существенный недостаток — они самые дорогие. Чтобы снизить этот минус до минимума или обернуть его в плюс, потребуется соорудить её из светодиодной ленты своими руками. При этом стоимость источника света становится ниже, чем у люминесцентных аналогов.

Самодельная светодиодная лампа обладает рядом преимуществ:

  • срок службы устройства при правильной сборке составляет рекордные 100 000 часов;
  • по эффективности ватт/люмен они также превосходят все аналоги;
  • стоимость самодельной лампы не выше, чем у люминесцентной.

Разумеется, есть один недостаток — отсутствие гарантий на изделие, который должен компенсироваться точным соблюдением инструкций и мастерством электрика.

Материалы для сборки

Способов создания лампы своими руками великое множество. Наиболее распространены методы с использованием старого цоколя от перегоревшей люминесцентной лампы. Такой ресурс найдется у каждого в доме, поэтому проблем с поиском не будет. Помимо этого понадобятся:

  1. Цоколь от перегоревшего изделия.
  2. Непосредственно ЛЕД. Они продаются в виде светодиодных лент или отдельных светодиодов НК6. Каждый элемент имеет силу тока примерно 100–120 мА и напряжение около 3–3,3 Вольта.
  3. Потребуется диодный мост или выпрямительные диоды 1N4007.
  4. Нужен предохранитель, который можно найти в цоколе перегоревшей лампы.
  5. Конденсатор. Его емкость, напряжение и другие параметры выбираются в зависимости от электрической схемы для сборки и количества светодиодов в ней.
  6. В большинстве случаев потребуется каркас, на который будут крепиться светодиоды. Каркас можно сделать из пластика или подобного материала. Главное требование — не должен быть металлическим, токопроводящим и должен быть теплоустойчивым.
  7. Для надежного прикрепления светодиодов к каркасу потребуется суперклей или жидкие гвозди (последние предпочтительней).

Читайте также:  Группы допуска и виды электротехнического персонала

Один–два элемента из вышеперечисленного списка могут не пригодиться при некоторых схемах, в других случаях могут, наоборот, добавляться новые звенья цепи (драйвера, электролиты). Поэтому список необходимых материалов нужно составлять в каждом конкретном случае индивидуально.

Собираем лампу из светодиодной ленты

Разберем пошагово создание источника света на 220 В из светодиодной ленты. Чтобы решиться использовать новшество на кухне, достаточно вспомнить, что собранные своими руками светодиодные лампы существенно выгодней люминесцентных аналогов. Они живут в 10 раз дольше, а потребляют в 2–3 раза меньше энергии при одинаковом уровне освещения.

  1. Для конструирования понадобятся две перегоревшие люминесцентные лампы длиной полметра и мощностью 13 ватт. Покупать новые смысла нет, лучше найти старые и неработающие, но не сломанные и без трещин.
  2. Далее идем в магазин и покупаем светодиодную ленту. Выбор большой, поэтому к приобретению подойдите ответственно. Желательно покупать ленты с чистым белым или естественным светом, он не изменяет оттенки окружающих предметов. В таких лентах светодиоды собраны в группы по 3 штуки. Напряжение одной группы 12 вольт, а мощность 14 ватт на метровую ленту.
  3. Затем нужно разобрать люминесцентные лампы на составные части. Осторожно! Не повредите провода, а также не разбейте трубку, иначе ядовитые пары вырвутся наружу и придется проводить уборку, как после разбитого ртутного градусника. Извлеченные внутренности не выбрасывайте, они пригодятся в дальнейшем.Ниже представлена схема светодиодной ленты, которую мы купили. В ней ЛЕД подключены параллельно по 3 штуки в группе. Обратите внимание, что такая схема нам не подходит.
  4. Поэтому нужно разрезать ленту на участки по 3 диода в каждом и достать дорогие и бесполезные преобразователи. Разрезать ленту удобней кусачками или большими и крепкими ножницами. После спаивания проволочек должна получиться схема, приведенная ниже.В итоге должно получиться 66 светодиодов или 22 группы по 3 ЛЕД в каждой, подключенные параллельно по всей длине. Расчеты просты. Так как нам понадобится преобразовать переменный ток в постоянный, то стандартное напряжение 220 Вольт в электрической сети нужно увеличить до 250. Необходимость «накинуть» напряжение связана с процессом выпрямления.
  5. Для выяснения количества секций светодиодов нужно разделить 250 Вольт на 12 Вольт (напряжение для одной группы по 3 штуки). В итоге получим 20,8(3), округлив в большую сторону, получаем 21 группу. Здесь желательно добавить ещё одну группу, поскольку общее количество светодиодов придется разделить на 2 лампы, а для этого нужно четное число. К тому же добавив ещё одну секцию, сделаем общую схему безопаснее.
  6. Нам понадобится выпрямитель постоянного тока, именно поэтому нельзя выбрасывать извлеченные внутренности люминесцентной лампы. Для этого достаем преобразователь, при помощи кусачек удаляем конденсатор из общей цепи. Сделать это достаточно просто, поскольку он расположен отдельно от диодов, то достаточно отломить плату.На схеме показано, что должно в итоге получиться, более подробно.
  7. Далее при помощи пайки и суперклея нужно собрать всю конструкцию. Даже не пытайтесь уместить все 22 секции в один светильник. Выше говорилось, что нужно специально найти 2 полуметровые лампы, поскольку разместить все светодиоды в одной просто невозможно. Также не нужно рассчитывать на самоклеющийся слой на обратной стороне ленты. Он не протянет долго, поэтому светодиоды нужно закрепить при помощи суперклея или жидких гвоздей.

Подведем итоги и выясним достоинства собранного изделия:

  • Количество света от получившихся светодиодных ламп в 1,5 раза больше, чем у люминесцентных аналогов.
  • Потребляемая мощность при этом намного меньше, чем у ламп дневного света.
  • Служить собранный источник света будет в 5–10 раз дольше.
  • Наконец, последнее преимущество — направленность света. Он не рассеивается и направлен строго вниз, благодаря чему используется у рабочего стола или на кухне.

Разумеется, испускаемый свет не отличается высокой яркостью, но главным достоинством является низкое энергопотребление лампы. Даже если включить и никогда не выключать её, то она за год съест всего 4 кВт энергии.

При этом стоимость потребляемой электроэнергии в год сопоставима со стоимостью билета в городском автобусе.

Поэтому такие источники света особенно эффективно использовать там, где требуется постоянная подсветка (коридор, улица, подсобка).

Собираем простую лампочку из светодиодов

Разберем другой способ создания светодиодного светильника. Люстра или настольная лампа нуждается в стандартном цоколе E14 или E27. Соответственно, схема и используемые диоды будут отличаться. Сейчас широко используются компактные люминесцентные лампы. Нам потребуется один перегоревший патрон, также изменим общий список материалов для сборки.

Понадобятся:

  • перегоревший цоколь E27;
  • драйвер RLD2-1;
  • светодиоды НК6;
  • кусок картона, но лучше — пластика;
  • суперклей;
  • электрическая проводка;
  • а также ножницы, паяльник, плоскогубцы и другие инструменты.

Приступим к созданию самодельной лампы:

  1. Сначала нужно разобрать старый светильник. В люминесцентных компактных лампах цоколь присоединяется к пластинке с трубками при помощи защелок. Если найти места с защелками и поддеть их отверткой, то цоколь отсоединится достаточно просто. При разборке нужно быть осторожным, чтобы не повредить трубки. Если они лопнут, то наружу попадут ядовитые вещества, содержащиеся в них. При вскрытии следите, чтобы электропроводка, ведущая к цоколю, осталась цела. Также не выбрасывайте содержимое цоколя.
  2. Из верхней части с газоразрядными трубками нужно сделать пластинку, к которой будут крепиться светодиоды. Для этого отсоединяем трубки лампочки. В оставшейся пластинке находится 6 отверстий. Чтобы светодиоды надежно крепились в ней, нужно сделать пластмассовое или картонное «дно», которое также будет изолировать светодиоды.Использовать будем светодиоды НК6 (фото внизу). Их достоинство в том, что они многокристальные (по 6 кристаллов в диоде) с параллельным подключением. Из-за этого источник света получается достаточно ярким при минимальной мощности.
  3. В крышке делаем по 2 отверстия для каждого светодиода. Прокалывайте отверстия аккуратно и равномерно, чтобы их расположение и задуманная схема соответствовали друг другу. При использовании в качестве «дна» куска пластмассы светодиоды будут крепиться довольно прочно, но в случае применения куска картона понадобится склеить основание со светодиодами с помощью суперклея или жидких гвоздей.
  4. Так как лампочка будет применяться в сети с напряжением 220 вольт, то понадобится драйвер RLD2-1. К нему можно подсоединить 3 одноваттных диода. У нас же 6 светодиодов с мощностью 0,5 ватт каждый. Поэтому схема соединения будет состоять из двух последовательно соединенных частей, в каждой части располагается 3 параллельно подсоединенных светодиода.Вверху приведена схема, а в реальности вся конструкция выглядит так:
  5. Перед сборкой нужно изолировать драйвер и плату друг от друга при помощи кусочка картона или пластика. Это позволит избежать короткого замыкания в будущем. Беспокоиться о перегреве не стоит, лампа практически не нагревается.
  6. Осталось собрать конструкцию и проверить в деле.

Световой поток собранного светильника равняется 100–120 люменам. Благодаря чистому белому свету лампочка кажется существенно светлее. Этого хватит для освещения небольшого помещения (коридора, подсобки).

Главным достоинством светодиодного источника света является низкое энергопотребление и мощность — всего 3 Ватта. Что в 10 раз меньше ламп накаливания и в 2–3 раза — люминесцентных.

Работает она от обычного патрона с питанием 220 вольт.

Заключение

Значит, имея под руками неработающие линейные или компактные люминесцентные лампы и несколько элементов, приведенных выше в данной статье, можно создать своими руками светодиодную лампу, обладающую рядом преимуществ.

Одно из основных — низкая стоимость по сравнению с лампами, которые можно приобрести в магазине. При сборке и монтаже требуется соблюдать меры безопасности, так как приходится работать с высоким напряжением, поэтому следует придерживаться последовательности монтажа по схеме.

В итоге получите лампу, которая будет долго работать и радовать глаз.

Видео

Источник: https://ProFazu.ru/svet/light/svetodiodnaya-lampa-svoimi-rukami.html

Cхема светодиодной лампы на 220 В

Главная > Лампы электрические > Cхема светодиодной лампы на 220 В

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

Светодиодные светильники на 220 В

Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Читайте также:  Система условных обозначений отечественных интегральных микросхем

Устройство LED-лампы

В состав лампы входят:

  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство LED-лампы на 220 вольт

На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с цветовой температурой 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

Простейшая схема подключения LED-лампы в сеть 220 вольт

Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

Классическая схема включения LED-лампы в сеть 220 В

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

Ремонт своими руками

В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

Лампа светодиодная на 220 вольт

Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

Изготовить своими руками

Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс.

Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену.

Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов.

Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей.

Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

Драйвер LED-лампы

Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно.

Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм.

Затем устройство собирается в светильнике.

Настольная лампа на светодиодах

Лампа на 220 В. Видео

Об изготовлении светодиодной лампы на 220 В своими руками можно узнать из этого видео.

Правильно изготовленная самодельная схема светодиодной лампы позволит эксплуатировать ее многие годы. Для нее бывает возможным ремонт. Источники питания могут быть любые: от обычной батарейки до сети на 220 вольт.

Источник: https://elquanta.ru/lampa/ckhema-svetodiodnojj-lampy.html

Светодиод 10 Ватт: характеристики, производители, подделки

Светодиод 10 Вт – является мощным полупроводниковым прибором. Сфера его применения, зачастую не ограничивается лампами и прожекторами. Также чип пользуется большой популярностью среди любителей смастерить устройство для освещения своими руками.

Область применения

Сверхъяркие светодиоды 10 W широко применяются в различных осветительных устройствах. Все сферы условно можно разделить на общее и специальное назначение. К общему назначению относится эксплуатация светодиодов в лампах, светильниках, прожекторах, а к специальному – применение для подсветки в оранжереях и аквариумах.

Второй вариант – это, так называемые, фитосветильники и не только. Фокус в том, что спектр излучения данного LED оптимальный для роста растений, как на суше, так и в воде.

А кроме водорослей и рыб, освещение 10 ваттными светодиодами, благоприятно влияет на развитие кораллов, поэтому любители аквариумов являются частыми потребителями этой радиодетали. Все эти замечательные свойства проявляются в определенной комбинации цветов кристаллов.

Что касается использования описываемого полупроводникового прибора для осветительных устройств общего назначения, то помимо бытовых ламп, светодиод отлично применяется для изготовления фар для автомобиля, светофоров, дорожной подсветки.

Конструкция светодиода, варианты исполнения

Светодиод COB 10 W представляет собой компактный модуль, выполненный по технологии chip-on-board. Принципиальное отличие от SMD заключается в том, что несколько кристаллов вместе размещаются на плате и покрываются общим слоем люминофора. Это значительно снижает стоимость матрицы.

Состоит она из 9 кристаллов: три параллельные цепочки по три последовательно подключенных кристалла в каждой. Внешне LED 10 W могут отличаться формой токопроводящей подложки. Например, светодиод фирмы Cree выглядит, как показано на рисунке.

Подложка его имеет форму звезды и выполнена из алюминия.

Корпус модуля изготовлен из термостойкого пластика, а линза – из эпоксидной смолы. Классические LED 10 W выглядят так, как показано на схеме, но на практике габаритные размеры варьируются в зависимости от производителя.

Не забывайте, что светодиод является полярным элементом, поэтому обращайте внимание на маркировку при монтаже. Обязательным условием адекватного функционирования светодиода 10 Вт является наличие теплоотвода.

Организовать его можно с помощью алюминиевого или медного радиатора. Смазывайте подложку светодиода термопроводящей пастой или термоклеем для лучшей теплоотдачи.

Иногда дополнительно монтируется кулер, который обеспечивает циркуляцию воздуха для охлаждения радиаторных пластин.

На видео вы можете увидеть испытание светодиода 10Вт и рекомендации при подключении такого элемента. Вот, как должна выглядеть схема подключения светодиода 10 Вт.

Источником питания может выступать автомобильный аккумулятор, компьютерный блок питания, или специально приобретенный 12-ти вольтовый источник.

Для того чтобы избежать перегрева (несмотря на радиатор) и защиты светодиода, крайне необходимо подключать его не напрямую к источнику, а через любой стабилизатор напряжения. На схеме показан интегральный стабилизатор напряжения LM-317, но можно использовать и другой с подходящими параметрами.

С помощью обычной кренки и резистора вы обеспечите себя гарантированными 12 В на выходе и ток не превысит 1 А, что является залогом долговечности работы вашего устройства.

Характеристики

Параметры 10-ваттного светодиода позволяют ему пользоваться большим спросом в линейке сверхъярких LED. Напряжение питания колеблется в пределах от 9 до 12 Вольт. Угол свечения — 120° – график изображен ниже.

Номинальный прямой ток равен 1 А, пульсирующий прямой ток – до 2 А. Световой поток находится в пределах 600-1080 лм. Для сравнения, лампе накаливания 75 Вт соответствует свечение в 935 лм.

Таким образом, можно ориентировочно прикинуть, насколько яркое свечение будет у данного полупроводникового прибора. Обратное напряжение составляет 50 В. Срок службы, в зависимости от производителя, 30-100 тысяч часов. Рабочая температура находится в диапазоне от -30°С до 80°С.

Цветовая температура светодиода на 10 Вт охватывает спектр от 2300 К (теплый белый) до 10000 К (холодный белый).

Производители

В трех частях света рассредоточены лидеры производства мощных светодиодов, таких как LED 10 W. Среди них американская компания Cree (которую мы уже упоминали и демонстрировали образец ее продукции), японская Nichia (пионера в области светодиодной техники), а также, немецкая Osram (более известная для отечественного покупателя).

Рассмотрим, с какими особенностями вы столкнетесь, решив приобрести китайские дешевые 10-ваттные светодиоды. Во-первых, если внимательно сравнивать, то 9 кристаллов матрицы сами по себе имеют меньшие размеры, чем у качественных модулей.

Это, естественно, скажется на светоотдаче при их работе. Во-вторых, сильная неравномерность свечения каждого кристалла.

Заметно это, правда, только при пониженном токе, но, тем не менее, такая особенность влияет на скорость деградации всего светодиодного модуля.

10 ваттные подделки из Китая

На картинке вы можете наблюдать, неравномерное свечение отдельных кристаллов модуля, и как с повышением тока она выравнивается. В-третьих, в светодиодах низкого качества соединяющие кристаллы проводники очень тонкие, и могут оборваться от неосторожного движения, чем прервут функционирование минимум одной тройки последовательных кристаллов.

Резюмируя описанное выше, хочется выделить важные для запоминания тезисы статьи. Светодиоды 10 Вт в качестве светоизлучающих источников широко применяются на практике для изготовления автоламп, фонариков, прожекторов и прочих осветительных приборов.

Радиаторное охлаждение критически важно для нормальной работоспособности светодиода. Питание производится от источника 12В через драйвер (стабилизатор напряжения).

Известный бренд гарантирует бесперебойное функционирование в течение всего заявленного срока, а с китайскими недорогими аналогами могут возникнуть проблемы.

Источник: http://ledno.ru/svetodiody/led-10w.html

Источник

Спасибо за чтение статей на сайте

Терменвокс своими руками

Терменвокс своими руками

Простой терменвокс

Этот удивительный музыкальный инструмент был изобретен в 1918 году Львом Сергеевичем Терменом и с тех пор носит имя своего создателя. Схем построения таких приборов существует множество, но все они позволяют извлекать звуки из инструмента … не прикасаясь к нему. Взглянем на нашу схему:

Состоит она из двух генераторов: первый собран на элементах  DD1.1, DD1.2, DD1.4, второй — на элементах  DD2.3, DD2.4, DD2.2. Дале сигналы с обоих поступают на смеситель, собранный на элементах DD3.1, DD3.2, DD3.3, DD3.

4, который одновременно выполняет роль усилителя мощности (все элементы микросхемы соединены параллельно). Нагрузкой смесителя служит динамическая головка ВА1, включенная через согласующий трансформатор  Т1.

А теперь как это работает.

Изначально оба генератора, собранные по схеме мультивибраторов, настроены на одинаковую частоту и на выходе смесителя, задача которого состоит в том, чтобы вычитать частоту одного генератора из частоты другого, ничего нет (биения равны нулю).

А теперь  обратите внимание на антенну, которая подключена к верхнему по схеме генератору (выводы 1,2 элемента DD1.1) через конденсатор С1.

Частота генератора достаточно высокая, и он запросто «чувствует» поднесенную к этой антенне руку (ведь наше тело тоже имеет электрическую емкость как конденсатор).

Чем ближе мы подносим руку, тем сильнее изменяется частота генератора. Поскольку частота второго генератора в это время остается постоянной, на выходе смесителя появится разностная частота или, как говорят, частота биений. Именно ее мы и услышим в динамической головке. Таким образом, приближая и удаляя руку от антенны, мы сможем извлекать звуки того или иного тона.

Переменный резистор R4 служит для регулировки громкости звука, а резистор R1 нужен для начальной балансировки частот генератора — настройке инструмента перед игрой.

Обратите внимание, что генераторы и смеситель собраны каждый на отдельной микросхеме, которые и питаются отдельно: первый генератор через цепочку R5, C5, второй – R6, C7 и смеситель – С6.

Сделано это для того, чтобы генераторы не мешали работе друг друга и один не менял свою частоту при изменении частоты другого или громкости звука. Пренебрегать такой схемой питания ни в коем случае нельзя, если хотите, чтобы ваш труд не пропал даром.

На месте Т1 может работать выходной трансформатор от любого карманного приемника или абонентского громкоговорителя (радиоточки). При этом обмотка, намотанная более толстым проводом, подключается к громкоговорителю — любой малогабаритной головке мощностью до 1 Вт и сопротивлением 4-8 Ом.

Изготовленное без ошибок устройство нуждается лишь в одной настройке – не поднося руку к антенне, резистором R1 установите в громкоговорителях «нулевые биения» – отсутствие звука, которому будет предшествовать самый низкий тон.

Вот и все, можно начинать игру,  приближая и удаляя руку от антенны — металлического штыря диаметром 4 — 5 мм и длиной 350 — 500 мм.

Лев Сергеевич Термен за своим инструментом

И он же, спустя годы (1981 г.)

Источник: http://begin.esxema.ru/?p=755

Терменвокс

“Терменвокс” — это первый электронный музыкальный инструмент, разработанный в 1921 г. санкт-петербургским физиком Львом Терменом и названный по имени своего изобретателя. Необычен он тем, что у него нет клавиш или струн.

Исполнение мелодии осуществляется путем приближения (удаления) одной или обеих рук к антенне.
Терменвокс схема которого приведена на рис.1, представляет собой упрощенный вариант терменвокса и реализовано на трех интегральных микросхемах. На элементах D1.1 и D1.

2 построен генератор (мультивибратор) переменной частоты, элемент D1.4 выполняет роль буфера.

Частота мультивибратора зависит от сопротивления резистора R2. емкости конденсатора СЗ и емкости между антенной WA1 и общим проводником устройства, которая образуется при поднесении руки исполнителя к антенне.

Для получения максимальной чувствительности генератора к емкости антенны-руки частота мультивибратора выбрана сравнительно высокой (несколько сотен килогерц).Второй генератор фиксированной частоты, идентичный первому, построен на элементах D2.3, D2.4 с буфером D2.2.

Частота генератора может изменяться в небольших пределах с помощью потенциометра RP1. В интегральных схемах D1 и D2 использовано по три логических элемента (всего — четыре). Входы неиспользованных логических элементов соединены с общим проводом.

С выходов этих двух генераторов сигналы поступают на смеситель, реализованный на микросхеме D3. Если на одних входах элементов D3.1…D3.4 сигналы имеют частоту f1, а на других — f2. то на выходе смесителя получаются сигналы частотой f1±f2- Элементы включены параллельно для увеличения нагрузочной способности смесителя.

При этом амплитуда полученного сигнала достаточна для раскачки подключенного к выходу смесителя выходного трансформатора Т1. Трансформатор нагружен на динамическую головку ВА1. Громкость звука можно плавно регулировать с помощью потенциометра RP4.

В качестве датчика применяется телескопическая антенна от портативного транзисторного радиоприемника, но можно использовать и кусок металлической трубки 04…6 мм длиной 350…500 мм. При использовании телескопической антенны можно дополнительно регулировать чувствительность прибора путем изменения ее длины.

Терменвокс питается от источника постоянного тока напряжением 9 В. Потребляемый ток не превышает 10 мА, поэтому можно использовать одну батарею типа 6F22.

Для предотвращения взаимного влияния двух генераторов каждый из них подключен к питанию через RC-фильтр (R5-C5 и R6-С7). Выходной трансформатор и громкоговоритель берутся от портативного транзисторного радиоприемника.

Устройство монтируется на печатную плату, чертеж которой показан на рис.2, а расположение элементов — на рис.3.

Собранный своими руками терменвокс помещается в корпус размерами 160x90x40 мм, на лицевую сторону которого выведены гнездо для антенны, оси двух nпотенциометров, громкоговоритель ВА1 и включатель питания. Указанные размеры корпуса являются ориентировочными и зависят, главным образом, от размеров громкоговорителя.

Интегральную схему CD4011В можно заменить на К176ЛА7. К561ЛА7, СМ14011Р, HEF4011.Настройка терменвокса производится следующим образом. С помощью потенциометра RP1 устанавливается режим “нулевых биений”, т.е. частоты двух генераторов выравнивэются так. чтобы звук в громкоговорителе не был слышен.

При приближении руки к антенне должен появляться звук. Точная настройка чувствительности производится потенциометром RP1: плавным поворотом его оси влево или вправо находится оптимальное положение, при котором звук появляется на максимальном расстоянии от руки до антенны.

Большей чувствительности можно достичь, если одна рука исполнителя касается общего проводника (массы) устройства. При приближении руки к антенне терменвокса происходит плавное понижение звуковой частоты (удаление руки вызывает повышение частоты звука). Если пошеве лить пальцами возле ан тенны.

возникает звук напоминающий смех После некоторой трени ровки можно научиться исполнять несложные мелодии.

Описанный прибор представляет интерес не только в области музыки. Без больших изменений он может служить, например, сигнализатором приближений в темноте к опасным предметам, в качестве предохранительного устройства и т.п.

Г.Минчев

Источник: http://ElectroScheme.org/482-termenvoks.html

Как сделать терменвокс своими руками | МИР УВЛЕЧЕНИЙ

Опубликовано 16 Сен 2014. Автор: master

Читайте также:  Регулируемый стабилизатор напряжения на основе компьютерного бп

Терменвокс — этот электронный музыкальный инструмент, работает на том же принципе, что и первый в мире ЭМИ «Терменвокс», построенный еще в двадцатых годах прошлого века Львом Сергеевичем Терменом. Музыка терменвокса весьма своеобразна, чем-то напоминает органную. Мы попробуем собрать терменвокс своими руками.

Терменвокс схема которого перед Вами имеет в основе два генератора. Частота одного из высокочастотных генераторов (Т2) постоянна, она лежит где-то в районе 100 кГц. Генератор собран по трехточечной схеме с индуктивной обратной связью, катушка L2на каркасе содержит 500 витков провода ПЭЛ 0,12—0,14, отвод от середины.

Такая же катушка L1 в другом генераторе (Т1), его частоту можно менять с помощью С1; этот конденсатор удобно заменить двумя — подстроечным емкостью 5—25 пФ, параллельно которому включен конденсатор с постоянной емкостью 100 пФ. С помощью подстроечного конденсатора добиваются того, что оба генератора давали одинаковую частоту.

Через цепочки R3, С4 и R6, С8, ослабляющие влияние генераторов друг на друга, высокочастотные сигналы подаются на преобразователь частоты, выполненный на диоде Д1 (преобразование частоты может производить любой нелинейный элемент).

Конденсатор С9 замыкает накоротко все высокочастотные составляющие, и на вход усилителя НЧ (ТЗ) попадает только составляющая низкой частоты (разностной частоты) . Она появляется, когда исполнитель подносит руку к антенне и несколько меняет тем самым частоту первого генератора.

Нужно стараться монтировать схему так, чтобы связь между генераторами была как можно меньше, для этого, например, разносят катушки L1 и L2, а иногда еще и экран ставят между ними, иначе происходит «затягивание» частоты, один генератор навязывает свою частоту другому и малые разностные частоты (десятки герц) получить не удается.

ActionTeaser.ru – тизерная реклама

Слушать терменвокс можно через достаточного мощный усилитель НЧ, на вход которого подается низкочастотный сигнал с выхода устройства (С11).

Это, конечно, не профессиональный инструмент, а, скорее, игрушка, демонстрирующая принцип, собрав которую можно послушать настоящий концерт терменвокс.

Заменив катушку L1 многовитковой проволочной рамкой на длинной рейке и включив на выход к С11 головной телефон, можно превратить терменвокс в металлоискатель: когда рамка окажется над металлическим предметом, индуктивность рамки изменится и в головных телефонах появится низкочастотный ток. Чем выше его частота, тем, значит, ближе к металлическому предмету находится рамка.

Рубрики: Электротехника и электроника

Источник: http://hobbi-world.ru/kak-sdelat-termenvoks-svoimi-rukami/

Терменвокс на транзисторах

Листовка N 96

РАДИОТЕХНИЧЕСКАЯ КОНСУЛЬТАЦИЯ ПРИ ЦЕНТРАЛЬНОМ РАДИОКЛУБЕ СССР

В 1921 году советский инженер Л. С. Термен на восьмом электротехническом съезде в Москве впервые в мире продемонстрировал исполнение концертной програм­мы на электронном музыкальном инструменте, который впоследствии получил наз­вание терменвокса. Принцип действия терменвокса нетрудно уяснить при рассмотре­нии структурной схемы, приведенной на рис. 1.

Генератор электрических колебаний создает высокочастотные колебания с фикси­рованной частотой 90 кГц.

Управляемый генератор создает колебания с частотой 90, 016 кГц, которая может изменяться до 94 кГц из-за изменения емкости антенного контура при поднесении руки исполнителя к штыревой антенне Ан во время игры на инструменте.

Колебания, создаваемые генераторами 1 я 2, поступают на контур 3 формирования тембра, в результате чего в нем возникают биения двух высокочастот­ных колебаний.

После детектирования этих колебаний детектором 4 на его нагрузке выделяются низкочастотные колебания, частота которых при игре на инструменте мо­жет изменяться в пределах 16 — 4000 Гц Напряжение разностной частоты подается на манипулятор 5, управляемый устройством формирования и затухания звука 6, и да­лее через регулятор громкости 7 — на вход отдельного усилителя низкой частоты.

Высшая звуковая частота в терменвоксе, равная 4000 Гц, примерно соответствует верхнему звуку рояля, а нижняя (16 Гц) — порогу слухового восприятия. При необ­ходимости этот диапазон может быть расширен или сжат.

Использование метода биений в терменвоксе позволяет получать требуемый диа­пазон звуковых частот без каких-либо переключений. Из всех известных нам люби­тельских схем терменвоксов, пожалуй, наиболее интересна схема, разработанная ин-женепом Л. Королевым, краткое описание которой мы и приводим здесь.

Как видно из принципиальной схемы терменвокса (рис. 2), генератор фиксирован­ной частоты выполнен на транзисторе 77. Его контур ЫС1СЗС4 настраивают ферри-товым сердечником катушки Ы на частоту 90 кГц. Управляемый генератор собран на транзисторе Т2. Контур этого генератора образован катушкой индуктивности L2 и конденсаторами С8 — С10.

Оба генератора выполнены по схеме с емкостной обратной связью. Частоту управляемого генератора можно изменять в пределах 90,016 — 94 кГц путем изменения емкости антенного контура L3L4Cau. Поднося в процессе игры на инструменте руку к антенне Ан1, исполнитель изменяет емкость антенного контура L3L4Call.

В результате изменяется частота управляемого генератора в пределах 90,016 — 94 кГц.

Собственная частота настройки антенного контура выбирается близкой к частоте управляемого генератора. Величина связи между катушками индуктивности L2, L.3 и частота настройки контура L3L4C3H определяют мензуру инструмента.

Высокочастотные колебания .с обоих генераторов через развязывающие цепи R5C6 и R10C12 поступают на контур формирования L5C13R11. Переменным конден­сатором С13 контур можно настроить на высшие гармоники сигналов генераторов.

Причем в положении максимальной емкости на конденсаторе присутствуют только первые гармоники генераторов, я в других положениях, наряду с первыми гармони­ками, имеются вторые, третьи или четвертые.

С части катушки индуктивности L5 вы­сокочастотные колебания подаются на усилитель (транзистор ТЗ), усиливаются им, а затем детектируются транзисторным детектором Т4.

В результате детектирования напряжения биений между первыми, а также высшими гармониками сигналов гене­раторов на выходе детектора — нагрузке R17 — образуются основной тон (разност­ной частоты) и соответствующие обертоны.

С выхода детектора низкочастотное напряжение поступает на манипулятор, кото­рый должен обеспечить надежное закрывание канала в паузах, отсутствие щелчков при игре на инструменте и возможность регулировки атаки и затухания звука.

Надеж­ное закрывание канала достигается применением двойного каскада затухания. Первая ступень выполнена на диодах ДЗ, Д4, а вторая — на транзисторе Т5.

Работа диод­ной ступени основана на зависимости сопротивления кремниевых диодов по перемен­ному току от величины приложенного к ним напряжения. В паузах между звуками, когда кнопка Кн1 разомкнута, постоянное напряжение на диодах ДЗ.

Д4 отсутствует; поэтому эти диоды оказываются закрытыми и на вход транзистора Т5 переменное на­пряжение не подается. При замыкании кнопки Кн1 диоды ДЗ, Д4 открываются, и на вход транзисторной ступени поступает низкочастотное напряжение с выхода детек­тора.

Резисторы R22, R24 — R26 и сопротивление транзистора Т5 образуют мост, в одну из диагоналей которого включена первичная обмотка I трансформатора Tpl. В дру­гую диагональ этого моста через устройство формирования атаки и затухания звука подается напряжение от стабилизированного выпрямителя.

При замыкании кнопки Кн1 и при сбалансированном мосте (это достигается установочным резистором R26) ток коммутации практически не проходит через обмотку I трансформатора Tpl, и пе­реходные процессы (щелчки) на выходе терменвокса не прослушиваются.

Напряжение же низкой частоты с выхода диодной ступени поступает на вход транзистора Т5 и далее через вторичную обмотку трансформатора Tpl на регулятор громкости R34 и выходные гнезда Гн1, Гн2.

Читайте также:  Gsm сигнализация часовой 8×8

Атака и затухание звука формируются специальным устройством, выполненным на резисторах R28 — R33, конденсаторах С23 — С25 и диодах Д10, Д11. При замыкании контактов Кн1 напряжение с выпрямителя поступает на делитель R28 — R30. Конден­сатор С23 через переменный резистор R31 заряжается до напряжения, снимаемого с делителя.

Время заряда конденсатора С23 определяет время атаки. Напряжение с этого конденсатора через диод Д11 поступает на конденсатор С24 и манипулятор. Полярность падения напряжения на резисторе R31, обусловленная током заряда кон­денсатора С23, обратна полярности включения диода Д10, а время заряда конденса­тора С24 невелико.

Поэтому диод Д10 и конденсатор С24 фактически не участвуют в формировании атаки.

При отпускании кнопки Кн1 в процессе игры на инструменте конденсатор С23 (через резисторы R29, R30) и прямое сопротивление диода Д10 быстро разряжаются,, а конденсатор С24 начинает медленно разряжаться через резисторы R32, R33 и ма­нипулятор. Характер спада напряжения на конденсаторе С24 определяет затухание сигнала, время которого можно регулировать переменным резистором R32.

Выпрямитель и стабилизатор собраны по типовым схемам. Потребляемый ток в паузе равен 13 мА, при открытом манипуляторе — 100 мА. Выход терменвокса под­ключается к высокоомному входу отдельного усилителя, в качестве которого можно, например, использовать усилитель, описанный в листовке № 94.

В конструкции применены стандартные малогабаритные детали. Все катушки ин­дуктивности и трансформаторы самодельные. Размеры каркасов катушек LI — L3 ука­заны на рис. 3.

Катушки LI, L2 содержат по 450 витков провода ПЭВ-1 0,12, ка­тушка L3 намотана тем же проводом до заполнения каркаса. Индуктивность катушки L1 — 1,1 мГ, L2 — 1,1 мГ, L3 — 58 мГ.

Внутри каркасов имеются ферритовые сер­дечники 600 НН диаметром 3,5 мм с напрессованной резьбовой втулкой. .Катушки L4, L5 выполнены на унифицированных каркасах, которые размещены в отдельных броневых сердечниках Б18М (с внутренним зазором 0,1 мм) из феррита 1500НМЗ.

Катушка L4 содержит 350 витков провода ПЭВ-1 0,12. Катушка L5 намотана прово­дом ПЭВ-1 0,23. Секции 1 — 2 и 2 — 3 содержат соответственно 12 и 55 витков. Индук­тивность катушки L4 — 27 мГ, L5 — 1,5 мГ.

Трансформатор Tpl выполнен на унифицированном каркасе, который размещается в сердечнике Б36М из феррита 2000НМ1. Обмотка I содержит 1450 витков, обмотка II — 2320 витков провода ПЭВ-1 0,08. Трансформатор Тр2 собран на сердечнике Ш16Х31 из трансформаторной стали.

Обмотка 1а содержит 1270 витков провода ПЭВ-1 0,23; 16 — 930 витков провода ПЭВ-1 0,17; II — 136 витков провода ПЭВ-1 0,64. Детали, входящие в состав колебательных контуров, и транзисторы Tl, T2 долж­ны быть идентичными. Конденсаторы С1, СЗ, С4, С8 — С10 слюдяные, с малым ТКЕ.

Конденсатор С13 — фирмы «Тесла» (секции соединены между собой параллельно). Переменные резисторы R34 (педального регулятора громкости), R31, R32 — группы «В». Антенна Ан1 — телескопическая от приемника «Банга» или ему подобного. Вы­сота антенны при настройке может изменяться от 40 до 80 см.

Стабилитроны Д1, Д2 должны быть идентичными.

Термен.вокс .смонтирован на металлическом шасси размером 220X120X33 мм. Монтаж выполнен на печатной плате из фольгиоованного гетинакса размерами 120X120X2 мм. На шасси установлены печатная плата, детали Тр2, В1. Пр1, С21, С22 и антенное гнездо. В подвале шасси находятся выпрямитель и стабилизатор. Транс­форматор Tpl размещен в подвале шасси вдали от трансформатора Тр2.

Терменвокс помещен в футляр, изготовленный из текстолита. В футляре имеются отверстия для антенны, ручки конденсатора С13 и вентиляции. Устройство формиро­вания атаки и затухания с органами управления (R31, R32. Knl, B2, ВЗ) собрано в отдельном выносном пульте размером 120X80X30 мм, который соединяют с инстру­ментом с помощью разъема.

Налаживание терменвокса начинают с проверки работоспособности выпрямителя, стабилизатора и с установки требуемых режимов работы транзисторов. Далее, убедив­шись в работоспособности генераторов, с помощью сердечников .

катушек LI — L3 по общепринятой методике устанавливают частоту 90 кГц.

При настройке управляемого генератора вместо антенны подключают конденсатор Сан (10 — 15 пФ), а катушку свя­зи L3 располагают на Каркасе L2 (расстояние между ними равно 3 мм).

Следующий этап налаживания — настройка трактов формирования тембра и низ-кок частоты. Для этого конденсатор С13 устанавливают в положение максимальной емкости, к коллектору транзистора Т4 подключают осциллограф и, изменяя индуктив­ность катушек L2, L3, по фигурам Лиссажу устанавливают разностную частоту 300 Гц.

Затем по волномеру конденсатором С13 перестраивают контур на частоту второй гармоники одного из генераторов и подбором резистора R17 получают на вы­ходе детектора амплитуду напряжения звуковой частоты 0,3 В.

После этого конденса­тор С13 снова переводят в положение максимальной емкости и сердечником катуш­ки L5 на резисторе R17 устанавливают амплитуду низкочастотного напряжения 0,3 В.

Затем резистором R26 производят балансировку манипулятора по минимуму щелчков при нажатии и отпускании кнопки Кн1. Эту операцию можно произвести на слух, подключив внешний усилитель. При нормальной работе генераторов, детектора и манипулятора на частоте 300 Гц амплитуда напряжения НЧ на резисторе R34 дости­гает 0,6 В.

Заключительным этапом налаживания являются уточнение настройки генерато­ров и подбор необходимой связи между катушками L2. L3.

Для этого к терменвоксу подключают антенну (предварительно отключают ее эквивалент) и, изменяя индук­тивность катушек L2, L3 и расстояние между ними, устанавливают частотный диапа­зон 4,5 — 5 октав.

Если инструмент настроен правильно, то при игре на нем звук дол­жен повышаться по мере приближения правой руки исполнителя к антенне (пальцы левой руки должны иметь контакт с. металлическими частями пульта управления). ! олебания генератора должны срываться в момент резонанса антенного контура и

контура генератора управляемой частоты при приближении плоскости ладони правой руки к антенне на расстояние нескольких миллиметров

Заканчивая краткое описание терменвокса, отметим, что игра на нем требует не только хорошего музыкального слуха, но и специальных технических знаний. Радио­любителям, которые заинтересуются вопросами конструирования и постройки тер-мсивоксов, рекомендуем ознакомиться со следующей литературой:

Бондаренко Е. Терменвокс на транзисторах. — «Радио», 1965, № 10, с. 33.

Королев Л. И снова терменвокс. — «Радио», 1972., № 9, с. 17 — 19 и вкладка.

Корсунский С. и Симонов И. Электромузыкальные инструменты (МРБ, вып 271). М. — Л., «Энергия», с. 13 — 21.

Симонов И. и Шиванов А. Терменвокс. — «Радио», 1964, № 10, с. 36, 37.

Москва, Издательство ДОСААФ СССР, 1976 г. Г-80685 от 18/Ш-1976 г. Изд. № 2/760зЗак. 793

Читайте также:  Fpga. просто о сложном — философия написания конфигураций для плис

OCR Pirat

Источник: https://pandia.ru/415663/

Световой терменвокс

Кто из нас не вздрагивал в кинотеатре во время просмотра фильма ужасов, который сопровождается жуткими звуками терменвокса. Классическая конструкция терменвокса представляет собой две антенны, которые управляют высотой и уровнем звука. Для игры на инструменте нужно перемещать руки возле антенн, но не прикасаться к ним.

В данной разработке используется непрерываемый поток фотонов (видимый свет) вместо радиоволн. Устройство можно собрать из доступных компонентов, включая распространенный 555 таймер. В результате мы получим мини-терменвокс с неплохим звучанием. Вы сможете поэкспериментировать с его звуками, меняя тип фотоприемника и величину емкости схемы.

Шаг #1: Используемые компоненты

• Соберите вместе макетную плату, конденсаторы, динамик, резисторы и фоторезистор (или фотодиоды). • В схеме данного проекта используется конденсатор емкостью 0.47 мкФ (его можно собрать из стандартных конденсаторов емкостью 0.22 мкФ или выше и установить их параллельно). • В схеме используется 555 таймер, который работает в режиме автоколебательного генератора.

Шаг #2: Установка 555 микросхемы и цепей питания

• Сначала установим 555 таймер на макетную плату. Для удобства пометьте первый вывод таймера (Pin 1). • Далее добавьте цепи питания линии — красная — +6 В, и черная — 0 В (Gnd-земля). • Красные и синие линии на макетной плате обозначают шины питания макетной платы.

Шаг #3: Установка резисторов

• Установите на макетную плату вверху резистор 10 кОм (маркировка — Коричневый, Черный, Оранжевый, Золотистый), и внизу резистор 1 мОм (маркировка – Коричневый, Черный, Зеленый, Золотистый), как показано на рисунке.

Шаг #4: Установка конденсаторов

• Установите параллельно два конденсатора емкостью 0.22 мкФ. • Не прикасайтесь к выводам конденсаторов! • Вы можете использовать два конденсатора емкостью по 0.22 мкФ или один емкостью 0 .47 мкФ. • Вставьте необходимые проводники, как показано на рисунке (два коричневых провода и один белый).

Шаг #5: Установка оставшихся компонентов

• Установите электролитический конденсатора емкостью 100 мкФ. • Примечание: Электролитические конденсаторы чувствительны к полярности. Их необходимо правильно устанавливать (обычно черная полоска на корпусе обозначает отрицательный вывод). • Установите динамик. Красный вывод (+) и черный (-); его тоже нужно подключать с учетом полярности. • Установите два фотодиода (второй рисунок). • Подайте питание на устройство. Вы услышите небольшой гул в динамике. Переместите пальцы к фотодиодам для понижения высоты звука. • Вот и все! Перемещайте пальцы вокруг фотодиодов для создания различных нот и звуковых эффектов.

Шаг #6: Экспериментальная часть проекта: фотодиоды против фоторезисторов

• В данной схеме используются фотодиоды, однако более широкий диапазон звуковых тонов можно получить при использовании фоторезисторов. • Испытайте различные типы фоторезисторов и удалите из схемы один из конденсаторов емкостью 0.22 мкФ — это также приведет к изменению высоты звука.

• Световой терменвокс в действии показан здесь и здесь.

Источник: http://electronics-lab.ru/blog/4004.html

Терменвокс D. I. Y

В последнее время невозможно представить музыку без электронных инструментов. ЭМИ получили характер массовости. Но мало кто знает, что первый электронный музыкальный инструмент – терменвокс, который носит имя своего создателя, изобрел наш русский ученый Лев Термен в 1919 году.

Игра на терменвоксе заключается в изменении музыкантом расстояния от его рук до антенн инструмента, за счет чего изменяется емкость колебательного контура и, как следствие, частота звука.

Вертикальная прямая антенна отвечает за тон звука, горизонтальная подковообразная — за его громкость.

Для игры на терменвоксе необходимо обладать идеальным слухом, так как вовремя игры музыкант не касается инструмента и поэтому может фиксировать положение рук относительно него, полагаясь только на свой слух.

Терменвокс –  весьма актуальный музыкальный инструмент, который можно применять абсолютно в любых музыкальных направлениях, является прародителем современных синтезаторов. Кто знает,  может быть не танцевали бы сейчас так рьяно под синтипоп,  если бы не изобретение Льва Термена.

В настоящее время, производством этих удивительных инструментов занимаются лишь несколько производителей,среди которых ведущую роль играет компания Moog Music. Модель Etherwave существует в двух модификациях:

Etherwave-kit: Набор для самостоятельной сборки, состоящий из корпуса светлого цвета,2-х антенн, печатной латы, набора для крепежа и набора радиоэлементов.

Etherwave Assembled: Собранный терменвокс, черный корпус.

Модель имеет широту диапазона в 5 октав и 4 элемента управления помимо антенн: Регулятор громкости, Регулятор высоты тона, регулятор формы волны (плавно изменяет форму волны от пилообразной до прямоугольной), регулятор яркости (управляет частотой среза высоких частот фильтром). Etherwave оснащён адаптером для крепления на стандартную микрофонную стойку. Антенны для транспортировки вынимаются.

      Средняя стоимость таких терменвоксов около 20000 рублей, что составляет примерно всю мою годовую стипендию в университете, поэтому я решил поискать, перед поездкой на митинский рынок, альтернативные варианты терменвоксов и их сборки.

Самый доступный терменвокс, который сейчас можно купить, сконструировал Майкл Уна (Michael Una),  основное отличие от классических терменвоксов в том, что он оптический, т.е. высота тона зависит от освещенности, которую моделирует фоторезистор.Схема устройства основывается на микросхеме-таймере 555.

Стоит такая игрушка 30  долларов. Майкл назвал ее Beep-It. Посмотреть бип вы можете на видео ниже и заказать тут.

Персональный сайт Майкла Уны.

Я решил воспользоваться еще одним вариантом упрощенного терменвокса, который предлагают наши левши-рукодельники.  Различие состоит лишь в том, что в терменвоксе изменения в генератор звуковых колебаний вносит емкость, а в данном устройстве -сопротивление.

Детали для изделия: сенсоры – две проводниковые полоски 10х100 мм (вырезаются из поляроидной кассеты);  транзисторы КТ312Б и МП42Б;  динамик P

Принцип действия:                                                                                                                                                             Вся схема, кроме сенсоров, представляет собой генератор, собранный на транзисторах разной структуры.

Обратная связь, необходимая для работы генератора, осуществляется с коллектора транзистора V2 на базу транзистора V1 через конденсаторы C1 и C2. На базе транзистора V1 нет постоянного напряжения, поэтому транзистор закрыт и генератор не работает до тех пор, пока не дотронуться до сенсоров E1 и E2. Тогда между сенсорами включается сопротивление (Rx) участка кожи руки.

После этого на базу подается напряжение смещения, и генератор включается. В динамической головке (динамике) B1 появляется звук.

      На самом деле при первой попытке собрать такой инструмент, было довольно сложно найти проводниковые полоски (старые поляроиды с их кассетами сейчас редкость).

Да и транзисторы КТ и МП советские, а рынок переполнен импортной продукцией, нашел разве что 1Т402А по заменяемости с военки. Так что всех кого заинтересовало, предлагаю попробовать собрать его самому.

Для этого потребуется еще ваш энтузиазм и паяльник. Ну или купить, потому  что даже кошки “лабают”..)

Источник: http://www.lookatme.ru/flow/posts/music-radar/64761-termenvoks-d-i-y

Источник

Спасибо за чтение статей на сайте

Измерение малых сопротивлений, шунтов

Измерение малых сопротивлений, шунтов

Измерение малых сопротивлений

Источник: http://elwo.ru/publ/skhemy_izmeritelnykh_priborov/izmerenie_malykh_soprotivlenij/17-1-0-642

Измерение малых сопротивлений. Схема приставки

Порой появляется необходимость выполнить измерение малых сопротивлений – обмоток реле, трансформаторов (до 20 Ом) или шунтов измерительных приборов (до 2 Ом). Приведенная в данной статье схема приставки к милливольтметру, позволяет выполнить замер сопротивлений на 2-х пределах: до 2 Ом и 20 Ом.

Вся работы данной приставки построена на измерении падения напряжения на измеряемом сопротивлении при заведомо известном значении тока протекающего через него. На транзисторе VT1 создается постоянное значение тока. Его повышенная стабильность создается работой операционного усилителя, который осуществляет управление транзистором VT1.

Значение постоянного тока в момент измерения сопротивлений до 20 Ом -10 мА и 100 мА при измерении до 2 Ом. Для увеличения стабильности работы всей схемы, микросхема DA1, в свою очередь, запитана от стабилизатора 78L05 (DA2).

 Переключателем SA1 осуществляется выбор предела измерений. Кнопка SA3 нажимается только в момент осуществления измерений. Для защиты вольтметра от поломки, при включении измерителя без резистора, в схему добавлен диод VD1.

Калибровка приставки

Сперва ручки переменных резисторов R2 и R5 необходимо установить в средние положения. Далее на приставку подают напряжение 8…24 В. Постоянную величину тока, протекающего через замеряемое сопротивление, возможно установить 2-я способами.

Первый способ потребует использования высокоточного миллиамперметра. Необходимо его щупы подсоединить к зажимам измеряемого малого сопротивления.

Переключатель приставки SA1 перевести в положение замера сопротивлений до 2 Ом (верхнее по схеме), а на миллиамперметре установить диапазон до 200 мА.

Затем нужно нажать на кнопку SA3 и путем изменения сопротивления переменного резистора R5 выставить ток 100 мА.

Далее переключатель SA1 установить в положение до 20 Ом (нижнее по схеме), уровень же миллиамперметра выставить на 20 мА. Нажимаем кнопку SA3 и резистором R2 выставляем ток 10 мА. Повторить данный способ калибровки тока несколько раз, а затем движки переменных резисторов покрыть лаком или краской.

Второй способ калибровки заключается в применении образцовых сопротивлений на 1 и 10 Ом. Путем изменения сопротивлений резисторов на каждом диапазоне установить падение напряжения на образцовых резисторах 100 мВ.

В данной приставке можно применить операционный усилитель LM324 или  К1401УД2А. Стабилизатор 78L05 можно заменить на К142ЕН5А, транзистор BD135 можно заменить на КТ815, КТ817, а  диод на КД103А. Транзистор VT1 необходимо разместить на небольшом радиаторе.

Для подключения измеряемого резистора малого сопротивления удобно использовать зажимы типа “крокодил”. Особое внимание следует уделить способу подсоединения щупов вольтметра.

Их непременно нужно подключить непосредственно к зажимам, в которых находится измеряемое сопротивление – в этом случае сопротивление проводов щупов не повлияет на результаты измерения.

Источник: http://www.joyta.ru/6417-pristavka-dlya-izmereniya-malyx-soprotivlenij/

Измерение ультрамалых сопротивлений

Техника измерений

Главная  Статьи, аналитика  Техника измерений

В профессиональной и радиолюбительской практике приходится встречаться с необходимостью измерения ультрамалого сопротивления. В статье рассказывается о возникающих при этом проблемах и способах их решения.

К числу задач, требующих измерения сопротивлений вплоть до 1 мОм с заданной точностью, относятся, например, изготовление шунтов (в том числе и для измерительных приборов), измерение переходного сопротивления контактов реле, переключателей и т. п. Аналогичная задача возникает и при необходимости отбора мощных полевых транзисторов по критерию сопротивления открытого канала, поскольку у современных транзисторов это значение доходит до нескольких миллиом.

В широко распространенных методах измерения последовательно с измеряемым сопротивлением Rx неизбежно включено паразитное сопротивление Rn, образованное соединительными проводами, переходным сопротивлением входных клемм или гнезд, контактных переключателей и т. п. Сопротивление Rn обычно находится в пределах 0,4…

0,1 Ом; конкретное его значение зависит от ряда причин, в том числе и типа прибора. Например, в цифровых мульти-метрах с автоматическим переключением предела измерений оно меньше, чем у приборов с контактными переключателями. Измерить сопротивление Rn предельно просто – достаточно установить нижний предел измерения омметра и замкнуть щупы.

Такие измерения являются также проверкой состояния контактов, которую целесообразно периодически проводить, особенно для мультиметров с галетными переключателями. При хорошем состоянии контактов сопротивление не должно превышать вышеуказанного значения 0,4 Ом, при большем – прибор следует разобрать и почистить контакты.

Для получения надежных результатов измерения следует провести несколько раз, после каждого проворачивая переключатель по кругу.

Ввиду того что сопротивление Rn включено последовательно с Rx, омметр измеряет их суммарное значение. Конечно, для больших значений сопротивления эта ошибка невелика и ее не учитывают. Иначе обстоит дело при измерении малых значений.

Несложно заметить, что для значений RX) соизмеримых с сопротивлением Rn, измерение в принципе еще возможно, хотя о точности говорить уже не приходится.

Другими словами, именно значение Rn является основным фактором, ограничивающим предел измерения сопротивления “снизу”, и поэтому в широко распространенных цифровых мульти метрах нижний предел измерения равен 200 Ом, что соответствует цене единицы младшего разряда 0,1 Ом.

Для приборов, имеющих АЦП 41/г разряда, цена единицы младшего разряда составляет 0,01 Ом, поэтому в таких цифровых мультметрах нередко есть возможность учесть в показаниях влияние сопротивления подводящих проводов

Из изложенного понятно, что для измерения ультрамалого сопротивления необходим измеритель с нулевым значением Rn Технически, конечно, возможно создание прибора с весьма малым значением Rm однако полностью исключить его нереально – законы физики не позволяют.

Рис. 1

Это действительно так для обычных, применяемых в аналоговых и цифровых омметрах, методов измерения сопротивления Тем не менее эта задача давно успешно решена в более сложных приборах для измерения малых значений сопротивления методом амперметра и милливольтметра [1].

Подобный метод используют и в геофизических исследованиях, где аналогичные проблемы возникают при измерении электросопротивления земных пород. Конечно, сопротивления земных пород не являются ультрамалыми и в зависимости от вида пород и их состояния (сухие, влажные, талые, мерзлые и т. п.

) меняются в самых широких пределах, но суть проблемы такая же – исключить влияние переходного сопротивления. В геофизике – это сопротивление забитых в землю измерительных электродов, но конкретная причина появления переходных сопротивлений и порядок их значений не являются суть важными.

Важно лишь то, что необходимо измерить сопротивление в условиях, когда переходные сопротивления соизмеримы или даже превышают (иногда даже значительно) измеряемое. Метод, позволяющий полностью исключить влияние переходных сопротивлений, получил название “метода четырех зондов”.

Насколько важен этот метод в геофизике, можно судить хотя бы по тому, что на нем основана вся электроразведка, в том числе и вертикальное электрозондирование (ВЭЗ).

Суть метода можно выразить следующей фразой: “если избавиться от паразитного сопротивления невозможно, то следует исключить его влияние”. Изложенное поясняется рисунком. Через измеряемое сопротивление Rx пропускают ток, регулируемый балластным резистором R6 и контролируемый амперметром РА1 Падение напряжения на Rx измеряют милливольтметром PV1.

Обратите внимание – вольтметр подключен непосредственно к Rx, поэтому влияние Rn полностью исключается. При этом, правда, появляется паразитное сопротивление Rnv в цепи вольтметра, образуемое контактным сопротивлением в точках подключения вольтметра (на рисунке показаны стрелками) и сопротивлением соединительных проводов вольтметра.

Однако влияние Rnv пренебрежимо мало и его можно не учитывать, поскольку условие Rv > Rnv (где Rv – входное сопротивление вольтметра) выполняется практически всегда Действительно, минимальное значение входного сопротивления мультимет-ра у самых простых моделей составляет 1 МОм, а значение Rnv заведомо меньше 1 кОм.

Значение Rx измеряемого сопротивления вычисляют по известной простейшей формуле Rx= U/I.

Выбор тока в измерительной цепи осуществляют исходя из требований к точности измерения сопротивления Модуль (абсолютное значение) относительной погрешности измерения сопротивления является суммой модулей относительных погрешностей измерения тока и напряжения. Для простоты (или просто для определенности в начале расчета) разделим эту погрешность поровну для тока и напряжения.

Например, если требуемая погрешность измерения сопротивления не более 2 %, то для тока и напряжения следует применять приборы не хуже класса 1,5. Цифровые мультиметры в большинстве случаев обеспечивают необходимую точность измерения тока, и с этим проблем обычно не возникает. Несколько сложнее обстоит дело с измерением напряжения. Покажем это на примере измерения сопротивления 1 мОм.

Читайте также:  Новый контроллер для заряда батарей напряжением до 80 в от linear

При токе 0,1 А падение напряжения составит 0,1 мВ, что для приборов с АЦП 31/г разряда на пределе 200 мВ соответствует единице младшего разряда и измерение невозможно. При токе 1 А измерение возможно, хотя и с заметной погрешностью.

Конечно, полный расчет погрешности измерения возможно провести лишь для конкретного случая с конкретными приборами, и в статье приведены лишь общие принципы ее определения.

Вычисление погрешности измерения для многих может показаться слишком сложным или даже вообще ненужным. Поэтому стоит напомнить старую истину – измерение, точность которого неизвестна, бессмысленно.

Другими словами, если нельзя определить (или хотя бы оценить) точность измерения, то нет смысла тратить время и силы на его проведение.

К этому еще можно добавить тот печальный факт, что практически все находящиеся сейчас в эксплуатации измерительные приборы не аттестованы (не прошли метрологической поверки), поэтому реальная точность их неизвестна и остается лишь доверять приведенным в паспорте данным.

Конечно, измерение методом четырех зондов существенно сложнее, чем обычным омметром – необходимы два измерительных прибора, источник питания и дополнительный переменный резистор; да и само проведение измерения требует больше времени. К тому же еще нужны некоторые расчеты. Но поскольку при этом применяется стандартная измерительная аппаратура, а проводить такие измерения приходится не слишком часто, с этим вполне можно смириться.

Несколько проще этот метод можно реализовать радиолюбителям при измерениях малых сопротивлений и с одним милливольтметром, используя источник стабильного тока с образцовым резистором, как это предложено сделать в миллиомме-тре, описанном в [2].

Литература:

  1. Попов В. С. Электротехнические измерения и приборы. – Госэнергоиздат, 1956, с. 186.
  2. Компаненко Л. Миллиомметр. – Радио, 2006, № 5. с. 23.

Источник: http://www.radioradar.net/articles/technics_measurements/measurements_ultra.html

9. Четырехпроводное измерение сопротивления (методом Кельвина)

Четырехпроводное измерение сопротивления (методом Кельвина)

Предположим, что мы захотели измерить сопротивление некоего компонента, расположенного на значительном расстоянии от омметра. Сделать это обычным способом весьма проблематично, так как омметр измерит все сопротивления цепи, включая сопротивления соединительных проводов (Rпровода) и сопротивление самого компонента (Rкомпонента):

Сопротивление провода, как правило, очень мало (всего несколько Ом на сотни метров, в зависимости от сечения), но, если провода очень длинные, а тестируемый компонент имеет небольшое сопротивление, то ошибка измерения будет существенной.

Выход из сложившейся ситуации можно найти в использовании амперметра и вольтметра. Из закона Ома мы знаем, что сопротивление равно напряжению поделенному на силу тока (R = U/I). Таким образом, мы сможем рассчитать сопротивление компонента, если измерим силу проходящего через него тока  и напряжение на его выводах:

Так как наша цепь является последовательной, сила тока в любой ее точке будет одинаковой. В связи с этим место подключения амперметра принципиального значения не имеет. Напряжение-же, в отличие от силы тока, на разных компонентах будет различным. Поскольку нам нужно рассчитать сопротивление определенного компонента, то и напряжение мы будем измерять именно на этом компоненте.

По условиям задачи, замер сопротивления необходимо произвести на некотором расстоянии от тестируемого компонента, а это значит, что вольтметр будет подключен к тестируемому компоненту посредством длинных проводов, обладающих некоторым сопротивлением:

Поначалу может показаться, что мы потеряли все преимущества от измерения сопротивления таким способом, потому что длинные провода подключения вольтметра внесут в схему дополнительные паразитные сопротивления. Однако, при детальном рассмотрении ситуации можно прийти к выводу, что это не так.

По проводам подключения вольтметра будет идти очень незначительный ток, а следовательно, падение напряжения на них будет таким маленьким, что его можно не принимать во внимание.

Иными словами, вольтметр покажет такое же напряжение, какое он показал бы при непосредственном подключении к компоненту:

Любое падение напряжения на проводах цепи, по которым течет основной ток, не будет измерено нашим вольтметром, и никаким образом не повлияет на расчет сопротивления тестируемого компонента.

Точность измерения можно повысить, если свести к минимуму поток электронов через вольтметр.

Достигается это при помощи использования более чувствительного (рассчинанного на небольшой ток) индикатора, и/или потенциомерического инструмента (инструмента нулевого балланса).

Такой метод измерения сопротивления (позволяющий избежать ошибок, вызванных дополнительным сопротивлением провода) называется методом Кельвина. Специальные соединительные зажимы, облегчающие соединение с тестируемым компонентом, называются разъемами Кельвина:

Зажим разъема Кельвина в целом похож на зажим типа “крокодил”, но между ними существуют небольшие различия.

Если две половины зажима “крокодил” электрически связаны друг с другом посредством шарнира, то две половины зажима Кельвина такой связи не имеют (они изолированы друг от друга).

Электрический контакт между ними возникает только в точке присоединения к проводу или выводу тестируемого компонента. Благодаря этому ток, проходящий через провод “Т” (ток), не попадает в провод “Н” (напряжение) и не создает ошибок, вызывающих падение напряжения в последнем:

Аналогичный принцип используется для измерения силы тока с помощью вольтметра и шунтирующего резистора.

Как уже говорилось ранее, шунтирующий резистор в этом случае будет определять, сколько вольт или милливольт напряжения будет приходиться на ампер тока.

Иными словами, резистор “преобразует” величину тока в пропорциональную величину напряжения. Таким образом, сила тока может быть точно определена путем измерения напряжения на шунтирующем резисторе:

Измерение тока при помощи вольтметра и шунтирующего резистора особенно актуально в цепях с токами большой величины. В таких цепях сопротивление шунта будет, вероятно, в пределах милли или микроом, чтобы падение напряжения при полном токе было минимальным.

Сопротивление такой малой величины можно сравнить с сопротивлением соединительных проводов, а это значит, что замер напряжения на шунтирующем резисторе нужно произвести так, чтобы избежать измерения падения напряжения на токонесущих проводах.

Для того, чтобы вольтметр измерял только напряжение на шунте, без всяких паразитных напряжений, возникающих из проводов и т.д., шунт оснащают четырьмя контактами:

В метрологических приборах (метрология – наука об измерениях), точность которых имеет первостепенное значение, высокоточные резисторы  также оборудованы четырьмя контактами: два – для измерения силы тока, и два – для передачи напряжения вольтметру. С помощью этих контактов вольтметр измеряет напряжение только на резисторе, не учитывая остальные паразитные напряжения.

На следующей фотографии показан погруженный в масляную ванну (с контролируемой температурой) высокоточный резистор номиналом 1 Ом. На этом резисторе вы можете увидеть два больших контакта для тока, и два маленьких – для напряжения:

Ниже показан еще один, более старый высокоточный резистор, немецкого производства. Он имеет сопротивление 0,001 Ом и четыре контакта, выполненных в виде черных ручек. Две большие ручки предназначены для подключения основных проводов исследуемой цепи, а две маленькие – для подключения вольтметра:

Стоит отметить, что совместное использование вольтметра и амперметра для измерения сопротивления увеличит ошибку в конечном результате.

Поскольку точность этих приборов оказывает непосредственное влияние на результаты измерения, общая их точность может быть хуже, чем точность любого из приборов по отдельности.

Например, если и амперметр и вольтметр имеют точность +/- 1%, любое измерение, проведенное с помощью этих приборов, может потерять в точности +/- 2%.

Более высокую точность измерения можно получить путем замены амперметра на высокоточный резистор, используемый в качестве токоизмерительного шунта. Некоторая погрешность в этом случае все равно будет иметь место, но она будет значительно меньшей, так как точность  резистора превышает точность амперметра. После произведенной замены схема, использующая разъемы Кельвина, примет следующий вид:

Жирными линиями на этой схеме обозначены токонесущие провода, их легко отличить от проводов, соединяющих вольтметр с обоими сопротивлениями (Rкомпонента и Rвысокоточ).

Источник: http://www.radiomexanik.spb.ru/7.-izmeritelnyie-priboryi/9.-chetyirehprovodnoe-izmerenie-soprotivleniya-metodom-kelvina.html

Шунт

В электронике и электротехнике часто можно услышать слово «шунт», «шунтирование», «прошунтировать». Слово «шунт» к нам пришло с буржуйского языка: shunt —  в дословном переводе «ответвление», «перевод на запасной путь». Следовательно, шунт в электронике — это что-то такое, что «примыкает» к электрической цепи и «переводит» электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение.  Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Помните Закон Ома  для участка электрической цепи? Вот, собственно и он:

где

U — напряжение

I — сила тока

R — сопротивление

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря «константа». Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Значит, исходя из формулы

получаем формулу:

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекаемую по проводочку АБ ;-). Все гениальное — просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Промышленные амперметры выглядят вот так:

На самом же деле, как бы это странно ни звучало — это вольтметры. Просто их шкала нарисована (проградуирована) уже с  расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

А вот, собственно, и промышленные шунты:

Те, которые справа внизу  могут пропускать  через себя силу тока  до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать  шунт с амперметром вот по такой схеме:

В некоторых амперметрах этот шунт  встраивается прямо в корпус самого прибора.

Читайте также:  Вч приставка к осциллографу

Хватит нудной теории, приступаем к делу.

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

Взади можно прочитать его маркировку:

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекаемая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 миллиВольт.

0,5  — это класс точности. То есть сколько мы замерили — это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 миллиВольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Итак, у нас имеется  простая автомобильная лампочка накаливания на 12 Вольт:

Выставляем на  Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 миллиВольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 миллиВольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс

Источник: https://www.ruselectronic.com/shunt-dlya-ampermetra/

Измерение больших токов шунтом

Иногда, в радиолюбительской практике и не только, требуется измерить токи, величиной в несколько десятков ампер. Обычный мультиметр может измерять токи до 10 А, ито не всегда.

Зачастую имеющийся под рукой прибор позволяет делать измерения до десятых долей ампера. Опытный радиолюбитель легко выйдет из положения, поэтому статья предназначена в первую очередь для новичков.

Итак, будем разбираться, как измерить ток с помощью закона Ома.

Применение закона Ома

Основной закон электротехники, он же закон Ома, гласит: I=U/R где I-это ток в амперах, U-напряжение в вольтах, R-сопротивление в омах. Эта формула говорит нам, что если в разрыв измеряемой нагрузки (где нужно измерить ток) включить шунт (R) и измеренное на шунте напряжение (U) подставить в формулу, по двум величинам R и U мы узнаем нужную нам I – протекающий ток.

Пример: мы ожидаем ток 20-30 А, а может и больший от потребления двигателем шуруповерта. У нас имеется проволочный шунт, сопротивлением 0,035 Ом. Шунт подключается в разрыв плюса или минуса, это не важно – действующий ток одинаков на всех участках цепи.

Так же параллельно шунту подключается вольтметр – по его показания можно судить о токе, потребляемом нагрузкой. У меня при почти полном торможении вала двигателя вольтметр показывал около 0,9 В.

Подставив известные нам значения в формулу I=0,9/0,035=25,7А – такой ток потребляет мотор.

Обратите внимание:
При измерении пульсирующих и динамически меняющихся токов, цифровой вольтметр не очень подходит, так как его контроллер очень медленно снимает показания. Для данной цели больше подходит стрелочный вольтметр.

Подобрав шунт нужного сопротивления, можно измерять любые постоянные или пульсирующие токи, хоть до 300 А и более. Хотя я сомневаюсь, что такие измерения вам понадобятся.

Обычные резисторы не подходят в роли шунта для больших токов, так как обладают малой мощностью рассеяния. Рассчитать примерную мощность рассеяния шунта можно умножив ожидаемый ток в амперах на падение на нем в вольтах.

Для выше приведенного примера это 25,7*0,9=23,13 Вт, такой мощностью обладают проволочные резисторы.

Самодельный шунт

Не всегда под рукой имеются проволочные резисторы таких мизерных сопротивлений, я бы даже сказал чаще их нет.

Из положения можно выйти при помощи нихромовой проволоки от вышедших из строя нагревателей, в крайнем случае можно использовать обычный медный провод.

Для определения сопротивления куска проволоки понадобится амперметр (прям замкнутый круг) и источник питания с нагрузкой. Амперметр может конечно быть рассчитан на меньшие токи, чем предполагается измерять шунтом.

Например, для измерения сопротивления своего шунта 0,035 Ом я использовал источник напряжения 12 В и галогеновую лампу 12 В 35 Вт. Предварительно оценив, что лампа потребляет 35Вт/12В=2,9А, я использовал амперметр на 5 А. Безусловно, когда мы знаем ток потребления нагрузкой, как в моем случае, амперметром можно и не пользоваться, однако будет большая погрешность в измерениях.

Для измерительного шунта отлично подходит сборный шунт от советского измерительного прибора. Данный шунт имеет несколько отводов и обладает способностью держать большие токи.

Итак, подключаем шунт неизвестного сопротивления в разрыв между источником питания и нагрузкой (лампой). Аналогично, как при измерении тока, включаем параллельно шунту вольтметр.

В ситуации с лампой вполне сойдет цифровой вольтметр. Закон Ома здесь применим с той лишь разницей, что теперь нам известен ток и напряжение, а сопротивление нет.

Используя ту же формулу, подставляем известные значения: 2,9(ток потребления лампы)=0,1(напряжение на измеряемом шунте)/X(сопротивление неизвестно) – 2,9=0,1/X или данное уравнение можно записать иначе: X=0,1/2,9=0,034 Ома – сопротивление шунта.

Измерение переменного тока

Для измерения переменного тока так же применимы вышеописанные методы, с той лишь разницей, что нужно использовать вольтметр переменного напряжения, а в случае с измерением сопротивления шунта – амперметр переменного тока.

Для измерения в цепях с частотой 50 Гц вполне сойдут и цифровые вольтметры и амперметры (при наличии у них таких функций). При более высоких частотах цифровые приборы малопригодны, их показания могут сильно отличаться от реальности. Стрелочные измерительные приборы в этом случае куда более подходящие.

Смотрите так же другие статьи

Источник: https://yserogo.ru/elektronika/izmerenie-toka.html

Расчёт шунтирующего сопротивления амперметра :: АвтоМотоГараж

Для контроля величины тока применяется прибор называемый амперметром. Из практики могу сказать, что не всегда под рукой оказывается прибор с нужным диапазоном измерения. Как правило, диапазон либо мал, либо велик.

Здесь мы разберем, как изменить рабочий диапазон амперметра.  Амперметры на большие токи от 20 ампер и выше имеют в своём составе внешний шунтирующий резистор. Он подключается параллельно амперметру.

На рисунке 1 приведена схема включения амперметра с шунтирующем резистором.

В качестве примера в экспериментах будет использован амперметр M367 со шкалой до 150 ампер, соответственно при таком токе амперметр используется с внешним шунтирующим сопротивлением.

Если убрать шунтирующий резистор, то амперметр станет миллиамперметром с максимальным током отклонения стрелки 30 мА (далее будет пояснение, откуда это значение взялось). Таким образом, используя разные шунтирующие сопротивления можно сделать амперметр практически с любым диапазоном измерения.

Рассмотрим подробнее имеющийся измерительный прибор. Из его маркировок можно узнать следующее. Маркировка в верхнем правом углу (цифра 1 на изображении). Модель измерительной головки М367. Сделан на краснодарском заводе измерительных приборов (это можно определить по ромбику с буковками ЗИП). Год выпуска 1973. Серийный номер 165266.

Маркировка в нижнем левом углу (цифра 2 на изображении). Слева на право. Прибор предназначен для измерения постоянного тока. Магнитоэлектрический прибор с подвижной рамкой. Напряжение между корпусом и мангнитоэлектрической системой не должно превышать 2 КВ.

Рабочее положение шкалы прибора вертикальное. Класс точности прибора в процентах 1,5. ГОСТ8711-60.

Измерительная головка рассчитана на измерения силы тока до 150 ампер с использованием внешнего шунтирующего сопротивления рассчитанного на падение на нём напряжения номиналом в 75 милливольт.

Итак, это максимум что удалось узнать из маркировки амперметра. Теперь перейдём к расчетам. Сопротивление шунта определяется по формуле:

где : Rш – сопротивление шунтирующего резистора; Rприб – внутреннее сопротивление амперметра; Iприб – максимально измеримый ток амперметром без шунта;

Iраб – максимально измеримый ток с шунтом (требуемое значение)

Если все данные для расчёта имеются, то можно приступать к самому расчёту. Для упрощения можно воспользоваться онлайн калькулятором ниже:

В нашем случае из формулы видно, что данных не достаточно. Нам известен только максимальный измеряемый ток с шунтом. То есть, то, что мы хотим видеть в случае максимального отклонения стрелки амперметра.

Из маркировки прибора удалось узнать падение напряжения на шунтирующем сопротивлении. И это уже что-то. Из этого параметра ясно, что при подаче на прибор напряжения номиналом 0,075 вольт (75мВ) стрелка отклониться до крайнего значения на шкале 150 ампер.

Таким образом, получается, что максимальное отклонение стрелки прибора достигается подачей напряжения 75 мВ. Вроде как данных для расчета по-прежнему не хватает. Необходимо узнать сопротивление прибора и ток, при котором стрелка откланяется до максимального значения без шунтирующего резистора.

Далее предлагаю несколько способов для определения нужных параметров и решения задачи.

Способ первый. При помощи блока питания выясняем максимальное отклонение стрелки по току и напряжению без шунта. В нашем случае напряжение уже известно. Его замерять не будем. Измеряем ток и отклонение стрелки. Так как блока питания под рукой не оказалось, то пришлось воспользоваться очень разряженой батарейкой типа АА.

Ток, который батарейка могла ещё отдать, составил 12 мА (по показаниям мультиметра). При этом токе стрелка прибора отклонилась до значения на циферблате 60А. Далее определяем цену деления и рассчитываем полное (максимальное) отклонение стрелки.

Поскольку шкала циферблата амперметра размечена равномерно, то не составит труда узнать (рассчитать) ток максимального отклонения стрелки.

Цена деления прибора рассчитывается по формуле:

где:х1 – меньшее значение,х2 – большее значение,

n – количество промежутков (отрезков) между значениями

Для упрощения можно воспользоваться онлайн калькулятором ниже:

Расчёт показал, что цена деления прибора штатной шкалы составляет 5 ампер. При токе 12 мА стрелка отклонялась до показания 60А. Таким образом, цена одного деления без шунта составляет 1 мА. Всего делений 30, соответственно максимальное отклонение стрелки до значения 150А без шунта составляет 30 мА.

Далее при помощи закона Ома находим сопротивление прибора. 0,075/0,03=2,5 Ом

Расчёт:Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(10-0,03)=0,00752 Ом для шкалы 10А махRш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(5-0,03)=0,01509 Ом для шкалы 5А мах

Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(3-0,03)=0,02525 Ом для шкалы 3А мах

Для упрощения можно воспользоваться онлайн калькулятором расчёта сопротивления шунтирующего сопротивления выше.

Второй вариант.

При помощи прецизионного мультиметра замеряем сопротивление амперметра и далее при помощи закона Ома (зная напряжение максимального отклонения стрелки) находим ток максимального отклонения стрелки.

Измерения выполнялись прецизионными мультиметрами Mastech MS8218 и Uni-t UT71E. При измерении сопротивления амперметра значение составило 2,50-2,52 Ом прибором UT71E и 2,52-2,53 прибором MS8218.

Формула для расчёта тока отклонения стрелки до максимального значения:

Расчёт: 0.075/2.52=0.02976А

Для упрощения вычислений максимального тока отклонения стрелки амперметра можно воспользоваться калькулятором ниже:

Далее, как и в первом варианте выполняем расчёт сопротивления шунтирующего резистора (калькулятор выше). Для расчёта было принято среднее показание измеренного сопротивления амперметра двумя мультиметрами Rприб = 2,52Ом

Читайте также:  Простейшая сигнализация на attiny13

Расчёт:Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(10-0,02976)=0,00752 Ом для шкалы 10А махRш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(5-0,02976)=0,01508 Ом для шкалы 5А мах

Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(3-0,02976)=0,02524 Ом для шкалы 3А мах

Если сравнить расчёты двух методик между собой, то получились совпадение данных до четвёртого знака после запятой, а в некоторых случаях даже до пяти знаков.

О тонкостях изготовления шунтирующего сопротивления расскажу в следующей статье.

Источник: http://automotogarage.ru/equipment/electrical/shunting_resistor

Шунт для амперметра – как сделать самому, откалибровать и расширить возможности тестера

Измерение силы тока – достаточно важная процедура для расчета и проверки электрических схем. Если вы создаете прибор с потребляемой мощностью на уровне зарядки для мобильного телефона – для измерения достаточно обычного мультиметра.

Типичный недорогой бытовой тестер имеет предел измерения силы тока 10 А.

На большинстве подобных приборов имеется дополнительный разъем для измерения больших величин. Переставляя измерительный кабель, вы, наверное не задумывались, по какой причине надо организовывать дополнительную цепь, и почему нельзя просто воспользоваться переключателем режимов?

Почему одним прибором нельзя измерять широкий диапазон величин?

Принцип работы любого амперметра (стрелочного или катушечного) основан на переводе измеряемой величины в визуальное ее отображение. Стрелочные системы работают по механическому принципу.

Через обмотку протекает ток определенной величины, заставляя ее отклоняться в поле постоянного магнита. На катушке закреплена стрелка. Остальное – дело техники. Шкала, разметка и прочее.

Зависимость угла отклонения от силы тока на катушке не всегда линейная, это часто компенсируется пружиной особой формы.

Для обеспечения точности измерения, шкала делается по возможности с большим количеством промежуточных делений. В таком случае, для обеспечения широкого предела измерений шкала должна быть огромного размера.

Или же надо иметь в арсенале несколько прибором: амперметр на десятки и сотни ампер, обычный амперметр, миллиамперметр.

В цифровых мультиметрах картина схожая. Чем точнее шкала – тем ниже предел измерения. И наоборот – завышенная величина предела, дает большую погрешность.

Слишком загруженной шкалой пользоваться неудобно. Большое количество положений усложняют конструкцию прибора, и увеличивают вероятность потери контакта.

Применив закон Ома для участка цепи, можно изменить чувствительность прибора, установив шунт для амперметра.

Справка: Шунтом называется обходное сопротивление, проводник, подключенный параллельно измеряемому участку цепи. Часть тока устремляется в обход основного участка, и на подключенный прибор приходится меньшая нагрузка.

Изучение начнем с теории:

Как рассчитать шунт для амперметра?

  1. Расчет шунта для незначительного расширения верхнего предела шкалы амперметра.Сопротивление шунта вычисляется по формуле. Rш = (Rа * Iа)/(I — Iа)Rш – сопротивление, которым должен обладать шунт.Rа – внутреннее сопротивление амперметра без нагрузки.I – предполагаемый ток, при котором стрелка прибора займет максимальное положение в конце шкалы.Iа – ток, при котором стрелка прибора занимает крайнее положение в конце шкалы без применения шунта.Величина сопротивления рассчитывается по формуле в Омах, сила тока в Амперах.
  2. Расчет шунта для амперметра при существенном превышении предела измерений.Сопротивление шунта вычисляется по формуле. Rш = (Rа * Iа)/I

Как сделать шунт для амперметра, какие материалы при этом используются

Фабрично изготовленные шунты рассчитываются под готовые приборы, их параметры учитываются еще при вытягивании проволоки.

При создании учитывается даже расстояние от центра проволоки до мест подключения контактов. Несмотря на массивность конструкции, шунт достаточно точный и чувствительный прибор. На погрешность влияет даже разнесение контактов для прибора и контактов для измеряемой цепи.

Это низкоомные приборы. Сопротивление измеряется единицами Ом. Поэтому на рабочую величину влияет даже сечение проводника. При точной подгонке свойств шунта, можно делать на шине пропилы, для изменения удельного сопротивления.

Популярное:  Что измеряет вольтметр? Вопрос понятен всем. Или нет?

Еще один вариант юстировки фабричного шунта – подбор дополнительных сопротивлений. Такой способ часто практикуют доморощенные «Кулибины».

Шунт для амперметра своими руками можно изготовить из любого материала, обладающего низким сопротивлением и хорошей теплопроводностью. Если измеряемые токи не более 10 ампер – воспользуйтесь обычной стальной скрепкой большого размера.

Сталь противостоит влиянию высоких температур, и неплохо паяется (при необходимости стационарного монтажа). Если у вас есть медь – тоже хороший выбор. Только не переусердствуйте при калибровке. Случайно отпиленный для изменения сечения кусок нет смысла паять обратно.

[tip]Внимание! Если вы делаете проволочный шунт, не следует мотать из нее спираль. [/tip]

Индуктивность при протекании больших токов может исказить результат. Лучше применить иной материал, или уложить шунт волнами.

Как подобрать шунт для амперметра максимально точно?

Для стенда по подбору сопротивления нам понадобятся:

  • блок питания;
  • образцовый прибор;
  • качественные провода (медные);
  • переменное сопротивление;
  • собственно шунт и амперметр, для которого он готовится.

Схема нужна для точного подбора сопротивления шунта и калибровки прибора с установленной накладкой.

Установив под нагрузкой (заряд аккумулятора) минимальное и максимальное значение – приступаем к ступенчатому изменению силы тока переменным сопротивлением. Полученные на контрольном приборе значения наносим на шкалу.

Вспоминаем физику. Видео урок по расчету шунта для амперметра.

Источник: http://obinstrumente.ru/elektronika/shunt-dlya-ampermetra.html

Измерение малых сопротивлений. Схема приставки

Порой появляется необходимость выполнить измерение малых сопротивлений – обмоток реле, трансформаторов (до 20 Ом) или шунтов измерительных приборов (до 2 Ом). Приведенная в данной статье схема приставки к милливольтметру, позволяет выполнить замер сопротивлений на 2-х пределах: до 2 Ом и 20 Ом.

Описание работы приставки для измерения малых сопротивлений

Вся работы данной приставки построена на измерении падения напряжения на измеряемом сопротивлении при заведомо известном значении тока протекающего через него. На транзисторе VT1 создается постоянное значение тока. Его повышенная стабильность создается работой операционного усилителя, который осуществляет управление транзистором VT1.

Измерение малых сопротивлений. Схема приставки

Значение постоянного тока в момент измерения сопротивлений до 20 Ом -10 мА и 100 мА при измерении до 2 Ом. Для увеличения стабильности работы всей схемы, микросхема DA1, в свою очередь, запитана от стабилизатора 78L05 (DA2). Переключателем SA1 осуществляется выбор предела измерений. Кнопка SA3 нажимается только в момент осуществления измерений. Для защиты вольтметра от поломки, при включении измерителя без резистора, в схему добавлен диод VD1.

Калибровка приставки

Сперва ручки переменных резисторов R2 и R5 необходимо установить в средние положения. Далее на приставку подают напряжение 8…24 В. Постоянную величину тока, протекающего через замеряемое сопротивление, возможно установить 2-я способами.

Первый способ потребует использования высокоточного миллиамперметра. Необходимо его щупы подсоединить к зажимам измеряемого малого сопротивления.

Переключатель приставки SA1 перевести в положение замера сопротивлений до 2 Ом (верхнее по схеме), а на миллиамперметре установить диапазон до 200 мА.

Затем нужно нажать на кнопку SA3 и путем изменения сопротивления переменного резистора R5 выставить ток 100 мА.

Далее переключатель SA1 установить в положение до 20 Ом (нижнее по схеме), уровень же миллиамперметра выставить на 20 мА. Нажимаем кнопку SA3 и резистором R2 выставляем ток 10 мА. Повторить данный способ калибровки тока несколько раз, а затем движки переменных резисторов покрыть лаком или краской.

Второй способ калибровки заключается в применении образцовых сопротивлений на 1 и 10 Ом. Путем изменения сопротивлений резисторов на каждом диапазоне установить падение напряжения на образцовых резисторах 100 мВ.

В данной приставке можно применить операционный усилитель LM324 или К1401УД2А. Стабилизатор 78L05 можно заменить на К142ЕН5А, транзистор BD135 можно заменить на КТ815, КТ817, а диод на КД103А. Транзистор VT1 необходимо разместить на небольшом радиаторе.

Для подключения измеряемого резистора малого сопротивления удобно использовать зажимы типа «крокодил». Особое внимание следует уделить способу подсоединения щупов вольтметра.

Их непременно нужно подключить непосредственно к зажимам, в которых находится измеряемое сопротивление — в этом случае сопротивление проводов щупов не повлияет на результаты измерения.

Источник http://www.joyta.ru/6417-pristavka-dlya-izmereniya-malyx-soprotivlenij/

Источник: http://wptour.ru/izmerenie-malyx-soprotivlenij-sxema-pristavki.html

Способ измерения сопротивлений

№ 94385

Класс 21е, 29о!

21е, 36

СССР

3i t (, 11 «л !:Ц! в -;

J «Е

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

П. Б. Ираний

СПОСОБ ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЙ

Заявлено 12 июня 1950 г. за ¹ 3934/419762 в Гостехнику СССР

Опубликовано в «Бюллетене Изобретений>: № !О за 1932 г.

Предметом настоящего изобретения является способ измерения малых сопротивлений методом замещения.

Обычно для измерения малых омических сопротивлений пользуются мостом Томсона, для которого необходим очень чувствительный зеркальный гальванометр, или используют способ падения напряжений, при котором наряду со стрелочным милливольтметром высокой чувствительности требуется мощный источник постоянного тока, обеспечивающий необходимый измерительный ток 100 — 150 а.

Предлагаемый способ дает возможность измерять очень малые сопротивления (до 1 мком), не требуя применения дорогостоящих чувствительных приборов и мощных источников постоянного тока.

Согласно изобретению, это достигается тем, что измерительную цепь питают электрическими импульсами, которые получают от трансформатора, питаемого от маломощного источника тока через прерыватель.

На чертеже представлена электрическая схема p ii измерений предлагаемому способу.

Измерение производится по методу замещения — путем определения величин напряжений, создаваемых одним и тем же током на измеряемом и на эталонном сопротивлениях 1 и 2, включенных последовательно.

Необходимый для измерения ток

100 — 150 а получается от трансформатора 8, питаемого импульсами постоянного тока 10 а, источником которых служит обычный 6-в аккумулятор 4.

Этот трансформатор имеет первичную обмотку, омическое сопротивление которой рассчитано на питание током 10 а, при непосредственном подключении ее и зажимам аккумулятора. Вторичная обмотка состоит из нескольких витков большого сечения.

Она замкнута на эталонное омическое сопротивление 2 (шунт на 100 мком) и измеряемое сопротивление 1 гибким кабелем 5 необходимого сечения.

Благодаря низкому омическому сопротивлению вторичной цепи и большому сечению № 94385 з амер енное метром 7;

, — падение напряжения на эталонном сопротивлении, замеренное тем же милливольтметром. где: — измеряемое сопротивление;

R, — эталонное сопротивление, равное 100 иком. о; — падение напряжения на измеряемом сопротивлении, Отв. редактор И, Д. Тихомиров

Стандартгнз. Подп. к печ. 15/Х1-1956 r. Объем 0,125 п. л. Тираж 400. Цена 25 коп.

Министерство культуры СССР. Главное управление полиграфической промышленности.

Ярославский полиграфкомбинат. Ярославль, ул. Свободы, 97. Заказ 999. трансформаторного железа при прерывании, прерывателем 6 цепи первичной обмотки трансформатора 8 во вторичной цепи возоуждается мощный импульс тока, максимальная величина которого достигает

150 а. Продолжительность протекания тока составляет в среднем 4—

5 сек, Величину измеряемого сопротивления определяют по формуле:

R=R,: а

Предмет изобретения

Способ измерения сопротивлений методом замещения, о т л и ч ао шийся тем, что, с целью уменьгцения требуемой мощности источника измерительного тока при измерениях сопротивлений весьма малых величин, для питания измерительной цепи применяют электрические импульсы, получаемые от тоансформатора питаемого от указанного источника тока через прерыватель.

Источник: http://www.FindPatent.ru/patent/9/94385.html

Источник

Спасибо за чтение статей на сайте

Стробоскоп

Стробоскоп

Стробоскоп – это… Что такое Стробоскоп?

        первоначально прибор-игрушка, представлявшая два диска, вращающихся на общей оси (рис. 1).

На одном диске, как на циферблате часов, рисовались фигурки в различных фазах какого-либо повторяющегося процесса, например отдельные положения движения шагающего человека.

Ещё один диск, скрепленный с первым, прорезан радикальными щелями, через которые можно видеть расположенные за ними картинки.

         При вращении дисков зритель в смотровое окошко и сквозь щели вращающегося диска видит последовательно на короткие мгновения каждую из картинок и это расчленённое по времени на дискретные фазы движение объекта воспринимается им в виде слитного образа, совершающего непрерывное движение. Такое синтезирование единого зрительного образа движущегося предмета из последовательно предъявляемых через некоторые интервалы на короткое время отдельных его смещенных друг по отношению к другу изображений называется стробоскопическим эффектом (См. Стробоскопический эффект) 1-го типа.         Принцип действия древней игрушки был основан на фундаментальных свойствах аппарата человеческого зрительного восприятия, что позволило с успехом использовать его в ряде научных и технических применений. Так, на нём основано воспроизведение движущихся изображений в современной кинематографии (См. Кинематография) и телевидении (См. Телевидение).

         Стробоскопический эффект 2-го типа — иллюзия не движения, а, напротив, неподвижности предмета, на самом деле совершающего движения. При этом условием кажущейся остановки стробоскопически наблюдаемого предмета, совершающего периодическое движение с частотой fo будет равенство или кратность этой частоты частоте стробоскопического освещения fcтр.

         Если, например, частота вспышек света, который освещает вращающуюся спицу (рис. 2), будет равна числу оборотов спицы за 1 сек, то спица будет освещаться каждый раз в одном и том же положении «О» (в одинаковой фазе кругового движения) и зрительно она будет казаться неподвижной.

Если же частоту появления вспышек несколько уменьшить, то период между вспышками увеличится и за этот период спица будет совершать целый оборот, плюс поворот ещё на небольшой угол, следовательно, при каждой следующей вспышке она будет казаться немного сдвинутой в направлении вращения, последовательно в положении 1, 2,3 и т.д., т. е.

она будет казаться медленно вращающейся в том же направлении, как это показано на рис. 2, а.

         В том случае, когда частота вспышек немного больше числа оборотов спицы в сек, каждая последующая вспышка будет освещать спицу в положении, пока она не сделала ещё полного оборота, т. е. последовательно в положениях 0, 1, 2, 3… и т.д. (рис.

2, б), и она будет казаться медленно вращающейся в противоположную сторону от её реального движения. Такое же кажущееся обратное вращение спицы возникает и в случае, когда частота вспышек почти вдвое, втрое или вчетверо меньше вращения спицы. Это — т. н.

стробоскопическая иллюзия, которую мы иногда видим в кино.

         Следует заметить, что при частотах вспышек, кратных частоте вращения спицы, возникает удвоение, утроение, учетверение и т.п. увеличение кажущегося числа спиц, застывающих неподвижно на равных друг от друга угловых расстояниях по ходу её вращения.

         Для использования стробоскопического эффекта требуются источники прерывистого освещения с регулируемой частотой. В настоящее время (последняя четверть 20 в.) для периодического пропускания света применяются всевозможные оптические и электронные затворы (например, Керра ячейка), а также источники импульсного освещения с регулируемыми параметрами. Приборы такого рода и называются собственно стробоскопами.         Развитие стробоскопических методов привело к созданию стробирования (См. Стробирование) — выделения отдельной фазы движения какого-либо объекта путём пропускания света от него к глазу наблюдателя с определённой Скважностью, чем достигается отделение этой фазы от мешающих наблюдателю др. фаз движения этого объекта или иных помех.         С. находят широкое применение во всех областях человеческой практики, связанных с использованием стробоскопического эффекта. Так, стробоскопический эффект 2-го типа применяется при изучении движения объектов с периодической структурой (вращающиеся диски, движущиеся линейки с делениями, колёса, валы и т.п.), его используют, например, в индикаторах угловых скоростей. См. также статьи Стробоскопические приборы, Стробоскопический метод измерений, Стробоскопия и лит. при них.

         Н. Л. Валюс.

        

        Рис. 1 к ст. Стробоскоп.

        

        Рис. 2 к ст. Стробоскоп.

Источник: https://dic.academic.ru/dic.nsf/bse/136464/%D0%A1%D1%82%D1%80%D0%BE%D0%B1%D0%BE%D1%81%D0%BA%D0%BE%D0%BF

Автомобильный стробоскоп своими руками

Автомобильный стробоскоп – это электронный светотехнический прибор, позволяющий по метке на валу двигателя и шкале на его корпусе визуально определить и отрегулировать угол опережения зажигания (УОЗ) в двигателях внутреннего сгорания автомобиля. Принцип работы стробоскопа основан на стробоскопическом эффекте (зрительной иллюзии) возникающем, когда частота вспышек стробоскопа совпадает или близка частоте вращения коленчатого вала двигателя автомобиля.

Момент зажигания горючей смеси в автомобильном двигателе внутреннего сгорания существенно влияет на максимальную мощность, КПД, температурный режим и ресурс двигателя.

Поэтому крайне важно, чтобы воспламенение горючей смеси происходило в нужный момент времени.

Обычно воспламеняют смесь за несколько градусов до прихода поршня в верхнюю мертвую точку, и этот угол называется Угол опережения зажигания.

При увеличении оборотов двигателя угол опережения зажигания должен увеличиваться по заданной кривой, поэтому он выставляется в режиме работы двигателя на холостом ходу и контролируется во всем диапазоне изменения его оборотов в минуту, вплоть до 5000. Для контроля и установки УЗО и служит Автомобильный стробоскоп.

Радиолюбителям разработано много схем автомобильных стробоскопов, начиная от самых простейших на неоновых лампочках, и заканчивая современными схемами, с использованием микроконтроллеров, полевых транзисторов и сверх ярких светодиодов. Но такая комплектация дорогая, да и редко кто имеет программатор, чтобы программировать контроллеры. Более пятнадцати лет назад я собрал свой вариант схемы стробоскопа, который и представляю Вашему вниманию.

Электрическая схема стробоскопа

Отличительная особенность схемы представленного стробоскопа, это простейшая комплектация и возможность контроля угла опережения зажигания в автомобильном двигателе вплоть до 5000 оборотов в минуту.

Структурно схема состоит из нескольких функциональных узлов. Преобразователя напряжения, импульсной световой лампы, блока поджога и индуктивного датчика момента искрообразования.

Принцип работы

Преобразователь служит для преобразования напряжения аккумулятора 12 В в необходимое для питания импульсной световой лампы ИСШ-15 напряжение 300 В.

Выполнен преобразователь на микросхеме TL494, транзисторах VT1,2 и трансформатора Т1. Блок поджога световой лампы состоит из повышающего трансформатора Т2, конденсатора С6 и тиристора VD8.

Индуктивный датчика момента искрообразования состоит из катушки индуктивности L1 и транзистора VT3.

Благодаря применению в преобразователе ШИМ-контроллера TL494 (отечественный аналог 11114ЕУ4), схема преобразователя получилась простой и сохраняющая работоспособность при изменении питающего напряжения от 7 до 15 В.

Микросхема TL494 применяется практически во всех компьютерных блоках питания, выходит из строя редко, поэтому ее можно для изготовления стробоскопа выпаять из не подлежащего ремонту блока.

С выводов микросхемы 9 и 10 выходят прямоугольные противофазные импульсы с частотой около 20 кГц, заданной номиналом конденсатора С1 и резистора R1, и через токоограничивающие резисторы R4,5 номиналом 1 кОм поступают на базы ключевых транзисторов VT1,2.

С2,3 нужны для улучшения передних фронтов импульсов, VD1,2 защищают транзисторы от пробоя обратным напряжением. Если поставить полевые транзисторы, например IRFZ44N, то резисторы R4,5 и конденсаторы С2,3 нужно исключить, а емкость конденсатора С1 уменьшить до 1000 пф. Тогда частота работы преобразователя увеличится до 200 кГц, что позволит измерять угол опережения зажигания при оборотах двигателя до 10000 об/мин.

Открываясь по очереди, транзисторы обеспечивают протекание тока по первичным обмоткам трансформатора Т1, благодаря чему во вторичной обмотке возникает высокое напряжение, которое поступает на диодный мост и уже выпрямленное заряжает конденсатор С5 до величины 400 В. Это напряжение подводится к 5 выводу лампы EL1 и еще через токоограничивающий резистор R5 и первичную обмотку трансформатора Т2 заряжает конденсатор узла поджига С6.

Датчик момента искрообразования собран на катушке индуктивности L1, транзисторе VT3, и тиристоре VD8. Через кольцо трансформатора продевается высоковольтный провод, идущий к свече.

В момент появления высокого напряжения, в катушке наводится ЭДС, которая через конденсатор С7 поступает на базу транзистора VT3. Транзистор закрывается и на управляющий электрод тиристора VD8 поступает через резистор R7 положительное напряжение.

Тиристор открывается и конденсатор С6 через него разряжается. При этом ток разряда проходит через первичную обмотку трансформатора Т2. Во вторичной обмотке наводится высокое напряжение поджига лампы, которое подается на ее вывод 7.

Конденсатор С5, подключенный к выводам лампы 1 и 5, полностью через нее разряжается. Величина емкости конденсатора определяет яркость вспышки.

Применяемый тиристор VD8 имеет максимально допустимое напряжение анод-катод 300 В. Установленный резистор R6 совместно с резистором R5 образуют делитель, исключающий подачу напряжения более 300 В. При использовании более высоковольтного тиристора резистор R6 нужно исключить.

Для защиты по питанию установлен предохранитель на 5А, а от неправильного подключения полярности диод VD9. VD11 индицирует о подключении стробоскопа к аккумулятору.

Вся схема стробоскопа собрана в двух половинчатом пластмассовом корпусе размером 4,5×7,5×16 см. Для выхода света от импульсной лампы в торцевой стенке сделано круглое отверстие, в которое вставлена линза в оправке.

Это не обязательно, окошко можно закрыть для защиты от попадания внутрь стробоскопа грязи любым прозрачным материалом, например органическим стеклом. Лампа, для уменьшения световых потерь, на половину обвернута станиолевой фольгой.

Все детали стробоскопа, кроме лампы, собраны на печатной плате, представленной на фотографии.

Импульсный трансформатор Т1 имеет две обмотки. Первичная обмотка имеет отвод от середины. При намотке нужно отмерять необходимую длину провода диаметром 0,3-0,5 мм, сложить его вдвое и намотать 24 витка. Затем начало одной обмотки соединить с концом другой, это будет средняя точка.

Вторичная обмотка мотается проводом диаметром 0,15-0,25 мм в количестве 638 витков.

Для изготовления трансформатора ферритовый сердечник с катушкой можно использовать от понижающего трансформатора неподлежащего ремонту импульсного блока питания АТ или АТХ компьютера, предварительно удалив все обмотки.

Импульсный трансформатор поджига Т2 мотается на ферритовом кольце диаметром 15-20 мм проницаемостью от 1000 до 3000 НМ. Первичная обмотка мотается проводом 0,3 мм и имеет 4 витка. Вторичная обмотка мотается проводом диаметром 0,1 мм в шелковой изоляции и количеством витков 500.

Большое количество витков вторичной обмотки взято не случайно, при больших оборотах двигателя конденсатор С6 не успевает полностью заряжаться и напряжение поджига уменьшается. Благодаря запасу обеспечивается достаточное напряжение для поджига.

Перед намоткой ферритовое кольцо нужно обязательно покрыть изоляционной лентой для исключения повреждения изоляции провода. Перед покрытием изоляцией необходимо мелкой наждачной бумагой, сточить острые грани по окружностям кольца.

После намотки, для исключения межвиткового пробоя изоляции при высокой влажности, обмотки трансформатора пропитаны воском.

Катушка индуктивного датчика намотана на ферритовом кольце диаметром 40 мм с проницаемостью от 1000 до 3000 НМ. На кольцо равномерно по всей окружности намотано 35 витков провода диаметром 0,8 мм. Сверху обмотка покрыта слоем изоляционной ленты.

Диаметр ферритового кольца выбран исходя и возможности продевания через катушку высоковольтного провода, идущего к автомобильной свече. Но практика применения стробоскопа показала, что он начинает устойчиво работать, если просто катушку приложить к высоковольтному проводу.

К аккумулятору стробоскоп подключается с помощью двух зажимов типа «крокодил». Для безошибочного подключения на крокодилах нанесена маркировка полярности.

Конденсаторы С5 и С6 типа К73-17. Импульсная лампа EL1 типа ИСШ-15, является маломощным строботроном, срок ее службы более 300 часов. Она специально разработана для стробоскопов.

В отличии от ИФК-120, лампа ИСШ-15 имеет больший ресурс и может работать на более высоких частотах. При отсутствии ИСШ-15, можно использовать ИФК-120.

Для удобства работы при установке угла опережения зажигания в автомобиле, в стробоскоп вмонтирован двух диапазонный аналоговый тахометр с растянутой шкалой.

Если не допущены ошибки в печатной плате и исправны элементы схемы, то настраивать нечего не нужно. Стробоскоп сразу заработает. Для упрощения поиска возможных ошибок целесообразно плату собирать узлами с последующей их проверкой. Сначала запаивается микросхема TL494, ее обвязка С1, R1- R3, С4 и VD9.

Подается напряжение и проверяется осциллографом наличие прямоугольных импульсов на выводах 9 и 10 микросхемы. Далее устанавливаются все детали, расположенные на схеме левее лампы, подается питание и замеряется напряжение на С5, которое должно быть 300-400 В. Дале запаиваются все остальные элементы.

Читайте также:  Аудио усилители с интерфейсом i2s и обратной связью от компании ti

Подается питающее напряжение, при замыкании анода с катодом тиристора VD8 должна происходить вспышка лампы. Для проверки работы стробоскопа можно рядом с катушкой L1 пощелкать пьезоэлектрической зажигалкой. При каждом щелчке лампа стробоскопа должна вспыхивать.Если есть генератор, то вместо катушки нужно подключить его выход.

Стробоскоп будет мигать с частотой генератора. 800 оборотов двигателя в минуту соответствует частоте генератора около 13 Гц.

Для перевода оборотов двигателя в частоту нужно число оборотов в минуту поделить на 60 (количество секунд в минуту), но гораздо удобнее воспользоваться табличными данными.

Как пользоваться стробоскопом

Для запуска стробоскопа в работу нужно при отключенном двигателе автомобиля продеть в кольцо индуктивного датчика стробоскопа снятый со свечи зажигания первого цилиндра высоковольтный провод и надеть его обратно на свечу.

Подключить, соблюдая полярность, крокодилы к клеммам аккумулятора. Запустить двигатель автомобиля и включить стробоскоп выключателем. При этом должен засветиться светодиод VD11 и засверкать в такт искре лампа стробоскопа EL1.

Вспышки стробоскопа имеют высокую яркость, что позволяет видеть метку на маховике двигателя при установке угла опережения зажигания даже в солнечную погоду.

Ответы на вопросы посетителя сайта по настойке стробоскопа

Посетитель сайта Юрий, повторил схему стробоскопа и остался доволен его работой. От изготовления стробоскопа на базе сверх ярких светодиодов его остановила цена светодиодов.

При настройке стробоскопа у Юрия возник ряд вопросов, на которые я давал ответы в ходе переписки.

Ответами на вопросы из переписки, с разрешения Юрия, с которыми могут столкнуться автолюбители, желающие повторить схему представленного стробоскопа, решил дополнить эту статью.

ВопросОтвет

Можно ли заменить тиристор КУ103В тиристором ВТ169G? Да, можно заменить на ВТ169D или ВТ169G. Так как максимальное напряжение анод-катод у ВТ169 не менее 400 В, то резистор R6 можно не ставить, он установлен для защиты КУ103В.
При шунтировании анода и катода тиристора лампа вспыхивает, но при открытии-закрытии транзистора вручную лампа не реагирует. Тиристор или транзистор неправильно запаян или неисправен. Номиналы резисторов не соответствуют схеме.Для выявления причины нужно отключить от управляющего электрода тиристора все элементы. В таком случае тиристор должен быть закрыт. Если к управляющему электроду присоединить через резистор по схеме R7 номиналом 27 кОм, то тиристор должен открываться. Если открывается, то виноват транзистор. Если тиристор не открывается, то можно уменьшить номинал резистора вплоть до 1 кОм, если открыть его, таким способом не удается, значит, тиристор неисправен.
Тиристор исправен, при прикосновении к управляющему электроду тиристора лампа вспыхивала однократно, получалось как сенсорное. Мне не понятно как закрывается тиристор, возможно, он запирается потенциалом управляющего электрода? Тиристор сам закрывается только тогда, когда напряжение анод-катод станет меньше определенного для каждого типа тиристора. Поэтому, когда конденсатор С6 разрядится, тиристор сам закроется. Резистор R8 выполняет функцию защиты транзистора от возможных высоковольтных импульсов и одновременно предотвращает случайное открытие тиристора от этих же импульсов.
На конденсаторе я добился напряжения 400 В при частоте генерации 200 кГц (поставил полевые транзисторы как указано в статье) но при емкости С5 – 1 мкФ яркость вспышки незначительна (лампа ИФК-120), при увеличении С5 до 10 мкФ стало слепить. Понимаю, что увеличение емкости приведет к неполному ее заряду на высоких оборотах, какую емкость оставить? По поводу высокого напряжения, его можно поднять хоть до киловольта, намотав больше витков вторичной обмотки, при этом яркость вспышки возрастет соответственно. Но величина напряжения не должна превышать допустимого для лампы. Поэтому лучше намотать больше витков, чем увеличивать емкость, а емкость уже подобрать исходя из максимальных оборотов, которые нужно контролировать.
По паспорту лампа ИФК-120 номинальное напряжение 300±20 В, т.е. не стоит увеличивать напряжение более имеющихся уже 400 В? Не стоит, так как повышенное напряжение может вызвать самопроизвольные вспышки лампы.
Из характеристик тиристора BT169G – отпирающее управляющее напряжение 0,5-0,8 В , т.е. когда транзистор VT3 открыт схема должна обеспечивать напряжение на его коллекторе относительно земли менее 0,5 В чтобы тиристор оставался закрытым? Да.
При закрытом транзисторе соответственно напряжение на его коллекторе и на управляющем электроде тиристора должно превысить 0,5 В, но не более 0,8 В дабы не спалить управляющий переход тиристора? Да, в цепи управляющего электрода тиристора стоит резистор R7, который ограничит величину тока, тем самым, исключая возможность увеличения напряжения более 0,8 В.
Играет ли роль какой стороной будет надеваться ферритовое кольцо на высоковольтный провод, или для этого и установлен в схеме VD10? Не играет, диод для этого и стоит.
Есть ли смысл заменить VT10 на полевой транзистор? В данном случае в этом нет необходимости, полевые транзисторы боятся статического электричества и без необходимости их лучше не применять.
Изменения, которые внес Юрий при повторении схемы стробоскопа. Лампу EL1 ИСШ-15 заменил на ИФК-120. Транзисторы VT1 и VT2 типа КТ817Б заменил полевыми IRFZ44N, VT3 типа КТ3102 на BC547. Тиристор КУ103В на ВТ169G. Резистор R8 c 820 Ом увеличил до 2 кОм, конденсатор С5 увеличил до 10 мкФ.

Отзыв Юрия о работе стробоскопа сделанного своими руками: «Работа стробоскопа проверена на автомобиле, работает отлично, яркость вспышки великолепная!!!»

Источник: https://YDoma.info/avtomobil-stroboskop-svoimi-rukami.html

Стробоскопы

  • 16-секционный светодиодный стробоскоп с чейз-эффектом, 16 ярких светодиодов белого цвета мощностью 5Вт, 3 режима работы: DMX-контроллер, режимы Master/Slave и Sound Active, 4 DMX-канальных режима, частота стробоскопического эффекта: управление с помощью DMX или ручки с задней стороны системы
  • 5-секционный светодиодный стробоскоп с чейз-эффектом, 5 ярких светодиодов белого цвета мощностью 5Вт, 3 режима работы: DMX-контроллер, режимы Master/Slave и Sound Active, 4 DMX-канальных режима, частота стробоскопического эффекта: управление с помощью DMX или ручки с задней стороны системы, регулировка яркости 0-100%
  • Стробоскоп 16 ярких белых светодиодов мощностью 5 Вт с энергопотреблением не более 107 Вт
  • Стробоскопическая пушка белого цвета 3 режима работы и DMX 3 режима DMX. 4-кнопочный дисплей, Работа без мерцания, 5  кривых яркости, Пульсационный и стробо эффекты, регулировка яркости: 0-100% Угол луча: 33˚ DMX-соединение: 3-контактные XLR. PowerCon. Передаваемая мощность: всего 120 Вт .светодиодный модуль холодного белого цвета (8000˚K) мощностью 100 Вт по технологии бескорпусного монтажа кристаллов на плате (COB) – Цветовая температура: 8000˚K – Работа с разными напряжениями: автопереключение, 100-240 В пер. т/50-60 Гц – Габариты (ДxШxВ): 131x200x324 мм – Масса: 4,32 кг
  • 800-ваттный DMX-управляемый стробоскоп
  • Мощный 1 500 Вт стробоскоп с разрядной лампой. Регулировка скорости и диммер 0-100% с DMX 512. Опционально можно управлять с помощью контроллера UC3 или вручную с помощью 2 ручек сзади устройства. Встроенные программы предоставляют возможность создания светового шоу даже без DMX.. Тип лампы: XOP-15, 1500Вт
  • Мощный стробоскоп на лампе 1500 Вт.
  • Thunder Strobe 10000 представляет собой легкий, компактный светодиодный стробоскоп сверхвысокой. 1260 светодиода, размещены в трех индивидуально управляемых сегментах, цветной стробоскоп имеет трииндивидуально управляемых сегмента.
  • Один из лучших стробоскопов в индустрии. Мощный интеллектуальный стробоскоп на 3000 Вт; качественный, надежный и простой в использовании. Полный набор функций и впечатляющие технические характеристики.

  • Мини-стробоскоп, 20 Вт, регулятор частоты

  • Стробоскоп, мощность 1500W, регулируемая яркость и частота вспышек, возможность управления от строб-контроллера

  • Стробоскоп, мощность 1500W, регулируемая яркость и частота вспышек, управление DMX-512

  • Мощный стробоскоп, 3000 Вт, управление DMX-512

  • ST-045W, профессиональный стробоскоп

  • Диско стробоскоп, 75W, 1-12 Гц

  • Диско стробоскоп, 150W, 1-12 Гц

  • Мощный стробоскоп с управлением DMX. Лампа XOP-15. Частота вспышек 0 -17 Гц. Регулировка яркости 0-100%. Управление 2-3 канала DMX-512, режим “Master-Slave”, встроенные программы, автономный режим работы, простое управление STROBO RC. Новая конс

  • Мощный стробоскоп с аналоговым управлением. Лампа XOP-15. Частота вспышек 0 -17 Гц. Регулировка яркости 0-100%.. Автономный режим работы (регуляторы на задней стенке прибора). Внешнее управление аналоговым контроллером 0+10В. Возможность подключения неско

  • Линейный LED стробоскоп плюс светильник ультрафиолетового света.

  • Стробоскоп Atomic 3000 светодиодный

  • Martin Atomic Colors • Гелевая лента с 10 цветовыми оттенками, плюс прозрачный • Бесшумный вентилятор • Несколько режимов работы • Страховочный тросик • MPU-02 или MPU-08 для подключения 2 или 8 скроллеров Atomic Colors • Встроенная память с дисплеем и обнулением настроек • Управление по протоколу DMX • Адресация устройств через встроенный дисплей

  • Martin RUSH Strobe 1 5×5 – Белый светодиодный стробоскоп • 5 x 5 матричная панель • Диоды с индивидуальным управлением • Запрограммированные макросы (эффекты, буквенные, цифровые и другие) • Соединение модулей по вертикали и горизонтали • Управление по DMX-протоколу или под музыку • Несколько опций управления по протоколу DMX • 3 и 5-pin XLR

  • Martin RUSH Strobe CWL – Компактный светодиодный линейный прибор стробирующих эффектов • Источник света: 99 светодиодов холодного белого цвета • 8 встроенных макросов • Световой выход: 17 000 люмен • Угол раскрытия луча: 87˚

  • Светодиодный стробоскоп на RGB светодиодах. Малое потребление энергия для максимально ярких эффектов.

  • Стробоскоп (от греческих слов στρόβος — «кружение» и σκοπέω — «смотрю») — это устройство, быстро воспроизводящее повторяющиеся световые импульсы. Используется для инсталляции клубов, баров, сопровождает выступление артистов на сцене.

    Работающий стробоскоп в клубе или на дискотеке легко определить по эффекту слегка искаженной реальности в помещении, когда движения людей кажутся несколько «рваными». Создается иллюзия съемки с частью выпавших кадров.

    Подобный эффект основывается на чередовании ярких коротких вспышек и ослеплении глаза на доли секунды.

    Для этого используются импульсные лампы (реже – лазеры), которые способны излучать кратковременные, но мощные пучки света в среднем от 3 до 10Гц.

    Стробоскоп, как ни один другой осветительный прибор требует к себе особого отношения.

    Оператору необходимо внимательно следить за режимом работы подобной техники и не допускать длительного мигания без перерывов.

    Особенно это касается любительских аппаратов, срок службы которых совершенно не предназначен для инсталляции клуба. Непрофессиональный стробоскоп может использоваться лишь для домашних вечеринок.

    Чтобы продлить «жизнь» устройству на долгие годы, его желательно включать сериями вспышек, не более одной минуты. Для профессиональных стробоскопов допускаются более длительные сроки, но обязательно не больше чем это оговорено в инструкции, при нарушении которой можно нанести вред не только технике, но и посетителям клуба.

    Отличие профессионального стробоскопа от любительского не только в надежности, но, прежде всего, в функционале. Профессиональное оборудование обладает большими возможностями. Качественный аппарат имеет функции дистанционного управления временем отключения, скоростью, количеством импульсов и массу других полезных характеристик.

    Ассортимент

    В Deep Sound можно купить оптом и в розницу профессиональные стробоскопы на выгодных условиях. Помимо привлекательной цены у нас вы получаете удобные условия доставки, бесплатную консультацию, своевременное техническое обслуживание, помощь в инсталляции, наладке оборудования и пр.

    Чтобы заказать продукцию Acme, Dts, American Dj или любой другой известной торговой марки, просто заполните заявку или позвоните нам.

    Источник: https://www.deep-sound.ru/catalog/stroboskopy/

    Стробоскоп

    Стробоскоп — это прибор, который производит частые и яркие импульсы света. Это позволяет получать интересные сценические эффекты, например, имитировать фотовспышки и грозовые разряды или создавать иллюзию замедленного движения. Стробоскопы используются для создания особой («дискотечной») атмосферы на концертах и дискотеках, а также во многих других сферах:

    • в промышленности для измерения скорости вращения или цикла движения различных устройств,
    • на телевизионных вышках, чтобы подавать сигналы пролетающим самолётам,
    • в системах оповещения и в полицейских машинах и т. д.

    Читайте также:  Измерение малых сопротивлений, шунтов

    Отцом светового стробоскопа считается американец Гарольд Эджертон. Ещё в 1931 году, будучи студентом Массачусетского технологического института, он обнаружил, что если освещать работающий автомобильный мотор мгновенными вспышками света, он кажется неподвижным. Эджертон использовал стробоскоп при создании своего метода скоростной съёмки, за что получил прозвище Papa Flash.

    В 60-е годы стробоскопы появились в клубах, правда, цель их использования была весьма своеобразной. Например, известный писатель Кен Кизи задействовал их на своих «кислотных тестах» для усиления действия ЛСД.

    Знаменитая фотография капли Гарольда Эджертона

    Стробоскоп действительно может оказывать неблагоприятное действие на человеческий организм. Особенно чувствительны к стробоскопическому эффекту дети и люди, страдающие эпилепсией, причём большинство из них испытывают недомогание при частотах от 15 до 70 Гц.

    Так, в 1997 году в одном из японских кинотеатров при демонстрации аниме про Покемона было госпитализировано 685 детей (все они почувствовали сильное головокружение на одном и том же эпизоде, где большой взрыв сопровождался яркими красными и синими вспышками света).

    Современный стробоскоп состоит из электронного импульсного генератора и источника света (чаще всего это ксеноновая газоразрядная лампа с цветовой температурой около 5600 К).

    Каждая вспышка длится приблизительно 200 микросекунд, но может быть короче или длиннее. Некоторые стробоскопы могут работать даже в непрерывном режиме, но не слишком долго, чтобы газоразрядная трубка не перегрелась и не вышла из строя.

    Яркость стробоскопа увеличивается, если в нём используется отражатель.

    Сейчас появляются светодиодные стробоскопы, которые не только экономичнее своих газоразрядных аналогов, но и гораздо удобнее в эксплуатации. Например, стробоскоп Atomic 3000 LED от компании Martin может генерировать тысячи цветных оттенков света, имеет встроенные макросы эффектов и совместим с видеокамерами высокого разрешения.

    Стробоскоп Atomic 3000 LED, Martin

    Источник: http://knowledge.sistema-stage.ru/encyclopedia/stroboskop/

    СТРОБОСКОП

    Стробоскоп — контрольно-измерительный прибор, наблюдающий быстрые периодические движения, использующий принцип стробоскопического эффекта (наблюдение объекта в периодических интервалах времени, и если время наблюдения объекта позволяет сохранить его изображение, то в силу инерции зрения изображение кажется непрерывным).

    Периодичность наблюдения обеспечивают специальные приспособления — вращающиеся диски или вспышки света.

    Стробоскоп измеряет число оборотов механизма, частоту колебаний механической системы, вибрацию, резонанс, а также наблюдает быстро колеблющиеся элементы, так как наблюдаемый объект, совершая периодическое движение, становится видимым на очень короткое время относительно движения.

    Стробоскоп был изобретен очень давно, но сначала это было не научно-техническое устройство, а всего лишь игрушка, конструкция которой была основана на свойствах человеческого зрения и восприятия изображения. Самый древний игрушечный стробоскоп имел в своей конструкции два диска, которые вращались на одной общей оси с помощью ручки.

    На одном диске были нарисованы картинки, такие как образы определенного процесса (например, ходьба). На другом диске были сделаны отверстия, расположенные радиально, для наблюдения за картинками первого диска. Оба диска были спрятаны за экран, в котором было смотровое окошко.

    При вращении оси диски также вращались, и картинки последовательно показывались в смотровом окошке на малое время, но все изображение сливалось в картину непрерывного движения. Цельное изображение движущегося объекта получалось из недолго видимых отдельных его изображений. Это стробоскопический эффект первого типа.

    Но если предмет движется периодически, то в стробоскопе возникает ощущение его неподвижности. Это стробоскопический эффект второго типа.

    На стробоскопическом эффекте основывается восприятие движений в кино и телевидении. Стробоскопический эффект обеспечивают источники света с регулируемой вспышкой, такие как приборы импульсного освещения.

    На его основе был создан новый метод — стробирование, основанный на выделении частотного интервала с целью поиска полезных сиг налов.

    Этот метод используется в основном в радиолокации дам поиска цели, он позволяет снизить воздействие помех.

    На основе стробоскопического эффекта были созданы контрольно-измерительные стробоскопические приборы, используемые в различных научно-технических и производственных областях. Действие приборов основано на периодическом движении объекта и освещении его на малое время сравнительно с движением.

    Это создает иллюзию неподвижности объекта. Стробоскопические приборы различаются по конструкции и способу действия и бывают механическими, электронными, осциллографическими. Механические стробоскопы имеют диски с отверстиями для наблюдения объекта и измеряют частоту его периодического движения.

    Этот способ дает возможность измерения угловых скоростей труднодоступных или очень малых объектов без контакта с самим объектом. Диапазоны измерения прибора составляют 300— 3000 об/мин и 3000—30 000 об/мин. Электронные стробоскопы имеют в своей конструкции генератор и газоразрядную лампу.

    Лампа — источник световых импульсов. Генератор задает регулируемую частоту импульсов, изменяя параметры электрической схемы. Этот тип стробоскопа наиболее эффективный и широко распространен в промышленности, точность его измерений доходит до 2%.

    Число измеряемых им оборотов у движущихся деталей от 250 до 3200 об/мин.

    Универсальный стробоскоп с питанием от батарейки используется для измерений как в помещении, так и в полевых условиях. Низкочастотные стробоскопы используются для научных опытов или обеспечения театральных светоэффектов. Частота вспышек этих приборов 1—10 Гц, 10—100 Гц.

    Одни электронные стробоскопы регулируют угол зажигания у двигателя автомобиля, другие используются в медицине для диагностических целей. Точность измерений очень высока — до 0,001%.

    Осциллографические стробоскопы измеряют амплитуду и длительность электрических импульсов в исследовательских целях с точностью 4%.

    Дальнейшее совершенствование конструкций стробоскопов направлено на расширение применения, наблюдения в различных диапазонах излучения, увеличение измерительной способности и точности измерений.

    Источник: http://enciklopediya-tehniki.ru/promyshlennost-na-s/stroboskop.html

    Самодельный стробоскоп для выставления зажигания — drive2

    ПРИНЦИП РАБОТЫ СТРОБОСКОПА ДЛЯ ВЫСТАВЛЕНИЯ ЗАЖИГАНИЯ

    В общем, вещь крайне полезная, и в среде любителей пользуется спросом и авторитетом. Принцип работы стробоскопа для зажигания основан на специфическом свойстве человеческого зрения суммировать в одну картинку серию мгновенных картинок. В основе любого подобного устройства используется импульсная малоинерционная лампа.

    По команде небольшой управляющей схемы лампа вспыхивает с определенной, но очень точной частотой. Если в темноте освещать, например, вращающийся диск с нанесенной белой риской, то благодаря упомянутому эффекту мы будем видеть застывший диск с неподвижной риской. Если диск вращается неравномерно, то в наших глазах риска будет смещаться.

    КАК ПОЛЬЗОВАТЬСЯ СТРОБОСКОПОМ ДЛЯ УСТАНОВКИ ЗАЖИГАНИЯ
    При выставлении угла ОЗ прибором направляют вспышки лампы или светодиода на шкив коленвала с риской ВМТ и отмечают ее смещение относительно меток на приливе рядом со шкивом. В качестве индикатора сигнала для зажигания лампы применяют емкостной датчик на бронепроводе первой свечки.

    Видя реальное положение метки на шкиве относительно контрольной точки, с помощью стробоскопа выполняют установку угла опережения зажигания. На работающем двигателе просто своими руками доворачивают трамблер влево-вправо, пока не увидят совмещения метки на шкиве с точкой выставления необходимого угла.

    КОНСТРУКЦИИ САМОДЕЛЬНОГО СТРОБОСКОПА ДЛЯ УСТАНОВКИ ЗАЖИГАНИЯ

    Сейчас на рынке можно купить немало полезного для настройки и регулировки мотора, но принципиальных преимуществ красивые «игрушки» перед самоделками не имеют, стоят дороже и ломаются чаще. Значительно проще и дешевле изготовить схему стробоскопа для установки зажигания своими руками. Требуется совсем немного терпения, паяльник и с десяток деталей.

    СТРОБОСКОП ДЛЯ УСТАНОВКИ ЗАЖИГАНИЯ ИЗ ДВУХ ТРАНЗИСТОРОВ

    Себестоимость подобной модели стробоскопа обойдется вам в пять сотен рублей, а используемая элементная база состоит из:

    пары КТ315 – самых распространенных советских транзисторов, которые легко отыскать в любой электронной игрушке;с десяток маломощных резисторов различного номинала, КУ112А;пару конденсаторов, один электролит на 47 мкФ, второй обычный, на 47 «пикушек»;диод серии КДс десяток светодиодов, лучше фонарных.

    Также для подключения стробоскопа для зажигания своими руками понадобится медный провод, пара метров двужильного с зажимами.

    Собираем конструкцию стробоскопа своими руками согласно раскладке схемы, можно даже навесным монтажом, но лучше на подготовленной плате. Особых премудростей в установке и подключении при налаживании УОЗ нет, поэтому при аккуратной пайке должно все заработать с первого толчка.

    Можно провести проверку схемы. После подачи напряжения с аккумулятора замыкаем вывод с медным контактом для «броника» с плюсовой клеммой. Если релюха зажужжит – схема в порядке.

    Подбором емкости электролита можно установить длительность горения светодиода, но лучше использовать рекомендованные номиналы. При слишком большой и яркой вспышке установить правильно угол не всегда удобно, потому как изображение меток слегка смазывается. Поэтому оптимальной будет емкость чуть менее рекомендованных 47 мкФ.

    Важно!Если у вас есть опыт работы со стробоскопом для установки зажигания, схему можно спаять прямо на автомобиле с выводом фонарика и установкой выключателя в удобном месте, в противном случае – лучше не рискуйте.

    Подключение и установка стробоскопа-самоделки своими руками сводится к подаче питания от аккумулятора на контакты платы и закреплению медной жилы поверх высоковольтного «броневика» первой свечи. Не забудьте проверить полярность питания перед включением стробоскопа.

    Схема проста и надежна, но насколько выдаваемые стробоскопом вспышки обладают точными временными характеристиками, зависит от многих факторов, в том числе от качества сборки и правильности установки схемы.

    ВАРИАНТ СТРОБОСКОПА С УЛУЧШЕННЫМИ ХАРАКТЕРИСТИКАМИ

    Если работа с радиодеталями не вызывает у вас раздражения и есть навык, можно попробовать изготовить и установить более сложный вариант стробоскопа. Схема использует сборку NE555, благодаря чему скважность импульса значительно лучше.

    Большинство аналогичных конструкций и схем используют КР1006ВИ1 с кучей дополнительной навески. В результате установка стробоскопа для зажигания получается дороже, хотя потенциально может использоваться для дополнительной настройки параметров регулятора.

    Если вам нужен надежный стробоскоп с точными и стабильными характеристиками – лучше использовать схему с NE555.

    Совет!Работать с пайкой контактов микросхемы следует заземленным паяльником.

    При более-менее точном соблюдении параметров деталей схема установки должна заработать сразу. Иногда требуется подстройка чувствительности схемы к разряду в бронепроводе. Для этого применяем переменное сопротивление №3.

    Если есть задумка оформить схему стробоскопа в виде «фирменного» прибора с коробкой и фонарем, можно вместо медного отрезка проволоки, накручиваемого на высоковольтный «броник», дополнительно изготовить и установить медный зажим-прищепку с припаянным контактом.

    В схеме стробоскопа выполнена установка светодиодов 5023VWC-M-15-cd в количестве 8 шт. Для ключа можно применить практически любой силовой биполярный транзистор.

    Практика показала высокую эффективность подобных устройств, их живучесть и возможность установки даже при отсутствии навыков и квалификации.

    Купить равноценный экземпляр стробоскопа в любом случае будет дороже, и еще неизвестно, сколько он проработает.

    Источник: https://www.drive2.ru/b/470147324820062234/

    Стробоскоп для выставления зажигания своими руками. Лучший способ установки момента зажигания – стробоскоп. В этой статье речь идет о способах выставления зажигания – самодельный и купленный стробоскоп

    Качество настройки двигателя является решающим фактором, от которого зависит не только продолжительность эксплуатации, но также мощность и расход топлива.

    К тому же ни один двигатель, используемый в качестве топлива — бензин, не сможет работать без специальной системы — системы зажигания.

    Именно она позволяет воспламеняться и детонировать топливовоздушной смеси внутри двигателя, приводя к вращению коленчатый вал и движению автомобиля.

    Система зажигания двигателя, что это такое

    Система зажигания обеспечивает образование искры для воспламенения смеси в необходимом цилиндре строго в момент сжатия. Происходит это в определенной последовательности работы цилиндров.

    Топливовоздушная смесь должна воспламеняться в определенный момент времени. Для этого искра срабатывает в определенный момент при четком согласовании с оптимальным условием работы двигателя с углом опережения зажигания. Эти условия предопределяются в первую очередь от количества оборотов заведенного двигателя, а также нагрузки на которой он работает.

    Благодаря качественно настроенной системе зажигания выдается необходимая величина энергии для образования искры, что позволяет надежно воспламенить рабочую топливовоздушную смесь. Именно качество и надежность системы зажигания автомобиля представляют оптимальные условия для обеспечения непрерывного образования искры в системе.

    Однако, может произойти так, что в системе зажигания проявляется неисправность как во время старта двигателя, так и во время последующей его работы. Это может проявиться в некоторых факторах, таких как:

    • плохой старт двигателя, или невозможность его запуска;
    • троение двигателя во время его работы, а также непроизвольная остановка во время пропусков искры в рабочих цилиндрах;
    • неправильный момент зажигания приводит к детонации топливовоздушной смеси и как результат — ускоренный износ рабочих деталей двигателя;
    • во время нарушенной работы системы зажигания появляются электромагнитные помехи, которые способны влиять на работу некоторых электронных систем.

    Читайте также:  Индикатор уровня тормозной жидкости

    Благодаря своевременной диагностики работы двигателя можно устранить большое количество возможных проблем.

    Для правильного определения угла и времени зажигания используется специальное оборудование, которое носит название стробоскоп.

    На сегодняшний день такое необходимое устройство можно как приобрести в любом автомобильном магазине, так и сделать самостоятельно. Последний способ может стать не менее надежным, но при этом быть менее затратным.

    Стробоскоп, принцип работы заводских стробоскопов

    Многие знают, что большинство проблем, которые могут возникнуть в период эксплуатации автомобиля, можно легко устранить самостоятельно при помощи самодиагностики, а также определенных навыков и знаний устройства подобной техники. Даже несмотря на всю сложность устройства автомобиля, можно легко справиться самостоятельно с возникающими проблемами, без надобности обращения на станцию технического обслуживания.

    Практически каждый автовладелец желает сэкономить некоторую сумму своих денежных средств, при приобретении заводского стробоскопа для выставления зажигания на автомобиле.

    Очень часто автовладельцы делают такое устройство самостоятельно, но в случае отсутствия уверенности в своих собственных силах, можно запросто приобрести качественный фирменный стробоскоп в ближайшем автомобильном магазине.

    До того момента, пока автовладелец решит приобрести фирменный стробоскоп, требуется тщательно остановиться на изучении его основных особенностей, а также его принципе работы. Для этого в первую очередь следует определиться с областью применения этого автомобильного девайса.

    Это устройство, которое носит название стробоском, дает возможность владельцу автомобиля без особых трудностей осуществить регулировку и подстроку зажигания машины.

    Такой девайс позволяет значительно ускорить этот процесс, не требую излишнего времени на создание своего собственного самодельного аппарата.

    Конструкцией этого аппарата предусмотрено наличие специальной сигнальной лампы, благодаря которой можно сразу же определить правильный момент появления искры и установить угол опережения зажигания. К основному преимуществу фирменного стробоскопа относится не только эффективность определения, но также и точность выполнения подобных задач за считанные минуты.

    Однако, на ряду с таким весомым преимуществом, есть один большой недостаток такого аппарата.

    Высокая стоимость этого устройства приводит к тому, что большая часть владельцев автомобилей пытается сделать подобный аппарат самостоятельно, без надобности тратить значительно большую сумму на приобретение фирменного стробоскопа.

    Высокая стоимость обусловливается тем, что практически все заводские модели имеют в своей конструкции дорогостоящие газоразрядные лампы, при замене которых будет значительно проще приобрести новое устройство. Стоимость газоразрядных ламп сопоставима с ценой нового аппарата.

    Стробоскоп своими руками — экономия материальных средств

    Если у владельца автомобиля есть время и желание сэкономить существенную сумму средств, то такой стробоскоп можно запросто сделать самостоятельно. Для этих целей понадобиться приобрести определенные детали, большая часть которых уже находиться в гараже большинства автовладельцев.

    Простая конструкция автомобильного стробоскопа может быть создана из обычного фонарика, простых и маломощных светодиодов и даже такой детской забавы как лазерная указка. Несмотря на простоту конструкции и в чем-то оригинальный внешний вид, такое устройство, сделанное собственными руками, прослужит также долго как и фирменный стробоскоп.

    Такое устройство для регулировки системы зажигания автомобиля наиболее необходима для тех машин, которые имеют карбюратор. Использование стробоскопа в таких автомобилях обуславливается тем, что регулировка зажигания в них производиться особым способом.

    Регулировка угла опережения зажигания, который находится на контактной группе трамблера и фактически всех распределителей не имеющих контактов, очень сложна и обойтись без специального устройства абсолютно невозможно.

    Благодаря самостоятельно сделанному стробоскопу можно всего за 10 минут произвести регулировку угла опережения зажигания с максимальной точностью.

    Регулировка системы зажигания автомобиля является крайне важной. Благодаря этому работа многих систем автомобиля будет более слаженной и транспортное средство сможет работать на высоком уровне. Поскольку стоимость фирменного стробоскопа в автомобильных магазинах существенно велика, то это и стало решающим фактором для создания самостоятельной модели стробоскопа.

    Стробоскоп своими руками с минимальными затратами, схема стробоскопа на основе корпуса фонарика или фотоаппарата

    Нет ничего лучше для любого автовладельца, чтобы произвести качественную диагностики либо мелкий ремонт автомобиля, при этом сумев сэкономить значительную сумму.

    Сэкономленные деньги могут пойти на усовершенствования автомобиля, или на покупку чего-либо приятного для себя и близких. Именно самостоятельно сделанное изобретение позволяет снизить финансовые затраты на ремонт и обслуживание автомобиля.

    Для проведения установки угла опережения зажигания как раз и была предложена схема нескольких вариантов самодельного стробоскопа.

    Стробоскоп — прекрасный вспомогательный инструмент, благодаря которому производится точная настройка системы зажигания двигателя любого современного автомобиля, работающего с карбюратором.

    Само устройство для установки зажигания можно легко изготовить самостоятельно из любых подручных средств, что станет в несколько раз дешевле покупки дорогостоящего стробоскопа.

    К примеру, на сегодняшний день автомагазины предоставляют широкий выбор стробоскопов, стоимость которых варьируется от 1000 до 6000 рублей.

    Самым распространенным видом самодельных стробоскопов, для которого понадобятся минимальные затраты на детали, можно собрать на основе корпуса фонарика либо фотоаппарата. Стоимость такого устройства будет в несколько раз дешевле и в большинстве случае не превысит 600 рублей, но в деле будет таким же надежным, эффективным и долговечным.

    Сегодня уже существует большое количество схем, по которым можно легко собрать качественный и рабочий стробоскоп. Для того чтобы его сделать самостоятельно понадобиться небольшие навыки работы с паяльником, немного времени и усидчивости. Самой популярной схемой можно выбрать следующую, состоящая из следующих деталей:

    • питающий шнур — 1 м;
    • транзистор КТ-315;
    • тиристор КУ-112А;
    • несколько резисторов на 0,125 Вт;
    • конденсаторы С1;
    • НЧ-диод V2;
    • реле с индексом RWH-SH-112D;
    • несколько специальных зажимчиков;
    • провод из меди — примерно 10 см.

    У многих радиолюбителей этот простой набор элементов можно найти в гараже, а в случае их отсутствия — в любом городе есть магазины подобной электроники либо радиолюбительский рынок. Это стандартный набор радиодеталей для создания подобного простого диагностического инструмента.

    Корпусом для конструкции этого самодельного стробоскопа послужит ненужный, но рабочий фонарик, или же сломанный фотоаппарат-мыльница. Его можно выбрать на свое усмотрение из того, что может оказаться под рукой и уже не нужным в хозяйстве.

    Для того чтобы сделать стробоскоп необходимо проделать небольшое отверстие в задней стенке фонарика либо фотоаппарата, через которое провести питающий провод.

    После чего на концы проводов следует припаять, или другим способом зафиксировать специальные зажимы типа «крокодил».

    Для большего удобства необходимо «крокодилы» установить разного цвета, или пометить провода разноцветной липкой лентой. Это позволит обозначить «плюс» и «минус» питания.

    Для того чтобы установить датчик следует определиться с какой стороны он будет фиксироваться, после чего проделать небольшое отверстие с нужного бока и просунуть в него провод к контакту датчика.

    Далее к основной жиле провода необходимо припаять ранее подготовленный небольшой кусок медной проволоки. Именно она будет служить в роли основного датчика стробоскопа.

    Все соединения следует тщательно изолировать от возможности короткого замыкания.

    Такое простое устройство, сделанное из подручных материалов, может быть многофункциональным. Его можно эксплуатировать в виде аппарата по регулировке зажигания, для проверки работоспособности свечей зажигания, а также производить настройку регулятора.

    Стробоскоп своими руками на основе таймера (схема)

    Стробоскоп для выставления оптимального угла зажигания запросто собирается на базе такого инструмент как таймер.

    Несмотря на свою значительно расширенную схему, оно обладает весьма крупным преимуществом — таймер имеет ровный световой импульс, который ни коем образом не будут зависеть от напряжения питающей батареи.

    Измерительное устройство, собранное на базе таймера, сможет работать в качестве измерителя оборотов двигателя. Для того чтобы переключить его будет достаточно провернуть специальный регулятор.

    Собрать такую схему качественного и рабочего стробоскопа можно не так быстро. Однако ряд весомых преимуществ не заставят долго себя ждать. В качестве заменителя специального сенсора можно намотать около 5 витков провода вокруг свечи.

    Стробоскоп своими руками на основе светодиодов (схема)

    На сегодняшний день светодиоды являются самым распространенным видом осветительного прибора. Такой популярности они добились за ряд преимуществ, с которыми не способны конкурировать другие световые устройства. Первым преимуществом стала экономичность.

    Такого положительного свойства удалось добиться за счет меньшей потребляемой мощности, при этом яркость их находится на весьма хорошем уровне. К тому же время эксплуатации среднестатистического светодиода достигает 50.

    000 часов непрерывной работы, что в свою очередь стало еще одним плюсом использования этого типа освещения во всех сферах деятельности человека.

    Не обошло стороной использование светодиодов и для изготовления стробоскопа. Доступность этой детали позволяет использовать их масштабно, а малое потребление электроэнергии способствовало тому, что можно сделать более яркий и заметный стробоскоп. Такое устройство можно с легкостью использовать в самый яркий световой день.

    В схеме этого аппарата используется специальная микросхема 155АГ1, запускаемая при помощи импульсов имеющих минусовую полярность.

    В самой схеме были использованы 3 резистора, которые влияют и «обрезают» амплитуду входного сигнала. А дальнейшая длительность импульсного сигнала устанавливается при помощи емкостного конденсатора С4, а также резистора R6.

    Источником питания для такой схемы необходимо подключить к бортовой электрической сети автомобиля.

    Совет профи: как настроить изготовленные стробоскопы

    Самостоятельно собранные стробоскопы по сути ничем не будут отличаться от фирменный, приобретенных в автомобильных магазинах. Профессионалы рекомендуют учитывать некоторые нюансы, при проведении диагностики автомобиля и системы зажигания в частности.

  1. Двигатель тестируемого автомобиля должен быть заведен и работать на холостом ходу без прогазовок и т.д.
  2. К сделанному самостоятельно стробоскопу необходимо подключить внешнее питания, которым может быть АКБ автомобиля, или другой элемент питания.
  3. Датчиком из меди необходимо обмотать жилу цилиндра двигателя.
  4. Свет следует направить на метку, которая находится на корпусе трамблера.
  5. На следующем этапе следует найти точку на шкиве маховика.
  6. Крутить корпус трамблера следует до того момента, пока сойдутся 2 точки, после чего следует зафиксировать их в определенном положении.

Как на Алиэкспресс найти и заказать стробоскоп по сходной цене и бесплатной доставкой

Алиэкспресс — самая популярная торговая площадка во всем мире, благодаря которой миллионы человек способны совершать покупки качественного товара по значительно низким ценам.

Этот сайт работает на протяжении последних 6 лет, в течении которых ежедневно добавляются миллионы товаров ежедневно.

Многие продавцы завлекают к покупкам в своих магазинах за счет низких цен, проведения постоянных акция, а также осуществления доставки по всему миру на бесплатной основе.

Многие автовладельцы проводят самостоятельный ремонт и диагностику своих автомобилей при помощи специального оборудования.

Многие такие специнструменты можно запросто приобрести в каталоге всемирно известной торговой площадке.

Для того чтобы приобрести заводской стробоскоп по сходной цене и с бесплатной доставкой необходимо зайти на главную страницу Алиэкспресс, после чего нажать кнопку «Смотреть все» в верхней левой части экрана.

Далее на открывшейся страницы всех разделов и категорий товаров следует выбрать «Автомобили и мотоциклы«, после чего перейти в подраздел «Инструменты, техническое обеспечение и уход«. Далее следует воспользоваться фильтром, находящимся в левой части экрана и выбрать «Средства диагностики«, где будет нужная категория «Стробоскопы«.

На сегодняшний день это весьма небольшая категория, однако здесь запросто можно приобрести оптимальный вариант стробоскопа.

Источник: http://prosedan.ru/stroboskop-dlya-vystavleniya-zazhiganiya-svoimi-rukami

Источник

Спасибо за чтение статей на сайте